Daria V Beznasyuk, Sara Martí-Sánchez, Gunjan Nagda, Damon James Carrad, Jordi Arbiol, Thomas Sand Jespersen
{"title":"选择性面积生长的 III-V 纳米线的规模依赖性生长模式。","authors":"Daria V Beznasyuk, Sara Martí-Sánchez, Gunjan Nagda, Damon James Carrad, Jordi Arbiol, Thomas Sand Jespersen","doi":"10.1021/acs.nanolett.4c03283","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their flexible geometry, in-plane selective area grown (SAG) nanowires (NWs) encompass the advantages of vapor-liquid-solid NWs and planar structures. The complex interplay of growth kinetics and NW dimensions provides new pathways for crystal engineering; however, their growth mechanisms remain poorly understood. We analyze the growth mechanisms of GaAs(Sb) and InGaAs/GaAs(Sb) in-plane SAG NWs using molecular beam epitaxy (MBE). While GaAs(Sb) NWs consistently follow a layer-by-layer growth, the InGaAs/GaAs(Sb) growth transitions from step-flow to layer-by-layer and layer-plus-island depending on the InGaAs thickness and the NW dimensions. We extract the diffusion lengths of Ga adatoms along the [11̅0] and [110] directions under As<sub>2</sub> during GaAs(Sb) growth. Our results indicate that Sb may inhibit the layer-by-layer to step-flow transition. Our findings show that different growth modes can be achieved in the MBE of in-plane SAG NWs grown on the same substrate and highlight the importance of the interplay with NW dimensions.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-Dependent Growth Modes of Selective Area Grown III-V Nanowires.\",\"authors\":\"Daria V Beznasyuk, Sara Martí-Sánchez, Gunjan Nagda, Damon James Carrad, Jordi Arbiol, Thomas Sand Jespersen\",\"doi\":\"10.1021/acs.nanolett.4c03283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to their flexible geometry, in-plane selective area grown (SAG) nanowires (NWs) encompass the advantages of vapor-liquid-solid NWs and planar structures. The complex interplay of growth kinetics and NW dimensions provides new pathways for crystal engineering; however, their growth mechanisms remain poorly understood. We analyze the growth mechanisms of GaAs(Sb) and InGaAs/GaAs(Sb) in-plane SAG NWs using molecular beam epitaxy (MBE). While GaAs(Sb) NWs consistently follow a layer-by-layer growth, the InGaAs/GaAs(Sb) growth transitions from step-flow to layer-by-layer and layer-plus-island depending on the InGaAs thickness and the NW dimensions. We extract the diffusion lengths of Ga adatoms along the [11̅0] and [110] directions under As<sub>2</sub> during GaAs(Sb) growth. Our results indicate that Sb may inhibit the layer-by-layer to step-flow transition. Our findings show that different growth modes can be achieved in the MBE of in-plane SAG NWs grown on the same substrate and highlight the importance of the interplay with NW dimensions.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03283\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03283","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Scale-Dependent Growth Modes of Selective Area Grown III-V Nanowires.
Due to their flexible geometry, in-plane selective area grown (SAG) nanowires (NWs) encompass the advantages of vapor-liquid-solid NWs and planar structures. The complex interplay of growth kinetics and NW dimensions provides new pathways for crystal engineering; however, their growth mechanisms remain poorly understood. We analyze the growth mechanisms of GaAs(Sb) and InGaAs/GaAs(Sb) in-plane SAG NWs using molecular beam epitaxy (MBE). While GaAs(Sb) NWs consistently follow a layer-by-layer growth, the InGaAs/GaAs(Sb) growth transitions from step-flow to layer-by-layer and layer-plus-island depending on the InGaAs thickness and the NW dimensions. We extract the diffusion lengths of Ga adatoms along the [11̅0] and [110] directions under As2 during GaAs(Sb) growth. Our results indicate that Sb may inhibit the layer-by-layer to step-flow transition. Our findings show that different growth modes can be achieved in the MBE of in-plane SAG NWs grown on the same substrate and highlight the importance of the interplay with NW dimensions.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.