Rui Liu, Yaqi Qi, Shaoqiao Zhao, Shulin Han, Yachen Cui, Yuzhi Song, Chuan-Kui Wang, Zongliang Li, Lei Cai
{"title":"通过增强辐射过程和降低结合能最大限度地降低有机发光体的效率衰减:理论启示。","authors":"Rui Liu, Yaqi Qi, Shaoqiao Zhao, Shulin Han, Yachen Cui, Yuzhi Song, Chuan-Kui Wang, Zongliang Li, Lei Cai","doi":"10.1021/acs.jpca.4c04754","DOIUrl":null,"url":null,"abstract":"<p><p>Organic solid-state lasers have received increasing attention due to their great potential for realizing organic continuous-wave or electrically driven lasers. Moreover, they exhibit significant promise for optoelectronic devices due to their chemically tunable optoelectronic properties and cost-effective self-assembly traits. Recently, a great progress has been made in organic solid-state lasers via spatially separated charge injection and lasing. However, making directly electrically driven organic semiconductor lasers is very challenging. It is difficult because of a number of excitonic losses caused by the spin-forbidden nature as well as serious efficiency roll-off at a high current density. Here, a multifunction gain material, functioning both as a thermally activated delayed fluorescence (TADF) emitter with exceptional optical gain and as a source of phosphorescence, was theoretically investigated. The new molecule we designed exhibits a reduction of triplet accumulation through an effective exciton radiative process (5-fold boost in figure of merit) and significantly decreased exciton binding energy (dipole moment from 5.77 to 14.03 D), which benefit amplified spontaneous emission and lasing emission. Our work provides theoretical insights into organic solid-state lasers and may contribute to the development of new and efficient laser-gaining molecules.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing Efficiency Roll-Off in Organic Emitters via Enhancing Radiative Process and Reducing Binding Energy: A Theory Insight.\",\"authors\":\"Rui Liu, Yaqi Qi, Shaoqiao Zhao, Shulin Han, Yachen Cui, Yuzhi Song, Chuan-Kui Wang, Zongliang Li, Lei Cai\",\"doi\":\"10.1021/acs.jpca.4c04754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organic solid-state lasers have received increasing attention due to their great potential for realizing organic continuous-wave or electrically driven lasers. Moreover, they exhibit significant promise for optoelectronic devices due to their chemically tunable optoelectronic properties and cost-effective self-assembly traits. Recently, a great progress has been made in organic solid-state lasers via spatially separated charge injection and lasing. However, making directly electrically driven organic semiconductor lasers is very challenging. It is difficult because of a number of excitonic losses caused by the spin-forbidden nature as well as serious efficiency roll-off at a high current density. Here, a multifunction gain material, functioning both as a thermally activated delayed fluorescence (TADF) emitter with exceptional optical gain and as a source of phosphorescence, was theoretically investigated. The new molecule we designed exhibits a reduction of triplet accumulation through an effective exciton radiative process (5-fold boost in figure of merit) and significantly decreased exciton binding energy (dipole moment from 5.77 to 14.03 D), which benefit amplified spontaneous emission and lasing emission. Our work provides theoretical insights into organic solid-state lasers and may contribute to the development of new and efficient laser-gaining molecules.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c04754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
有机固态激光器因其在实现有机连续波或电驱动激光器方面的巨大潜力而受到越来越多的关注。此外,有机固态激光器还具有化学可调光电特性和高性价比的自组装特性,因此在光电器件领域大有可为。最近,通过空间隔离电荷注入和激光,有机固态激光器取得了重大进展。然而,制造直接电驱动的有机半导体激光器非常具有挑战性。其困难在于自旋禁用性质导致的一系列激子损耗,以及高电流密度下的严重效率衰减。在这里,我们从理论上研究了一种多功能增益材料,它既可以作为具有特殊光学增益的热激活延迟荧光(TADF)发射器,也可以作为磷光源。我们设计的新分子通过有效的激子辐射过程减少了三重态积累(优越性提高了 5 倍),并显著降低了激子结合能(偶极矩从 5.77 D 到 14.03 D),从而有利于放大自发辐射和荧光发射。我们的研究为有机固体激光器提供了理论见解,并可能有助于开发新型高效激光增益分子。
Minimizing Efficiency Roll-Off in Organic Emitters via Enhancing Radiative Process and Reducing Binding Energy: A Theory Insight.
Organic solid-state lasers have received increasing attention due to their great potential for realizing organic continuous-wave or electrically driven lasers. Moreover, they exhibit significant promise for optoelectronic devices due to their chemically tunable optoelectronic properties and cost-effective self-assembly traits. Recently, a great progress has been made in organic solid-state lasers via spatially separated charge injection and lasing. However, making directly electrically driven organic semiconductor lasers is very challenging. It is difficult because of a number of excitonic losses caused by the spin-forbidden nature as well as serious efficiency roll-off at a high current density. Here, a multifunction gain material, functioning both as a thermally activated delayed fluorescence (TADF) emitter with exceptional optical gain and as a source of phosphorescence, was theoretically investigated. The new molecule we designed exhibits a reduction of triplet accumulation through an effective exciton radiative process (5-fold boost in figure of merit) and significantly decreased exciton binding energy (dipole moment from 5.77 to 14.03 D), which benefit amplified spontaneous emission and lasing emission. Our work provides theoretical insights into organic solid-state lasers and may contribute to the development of new and efficient laser-gaining molecules.