宿主特异性和局部分离多菌株益生菌对仔猪生产性能、死亡率、炎症反应和肠道微生物组的影响

IF 2.4 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Animal Bioscience Pub Date : 2024-10-28 DOI:10.5713/ab.24.0556
Katatikarn Sahatsanon, Panneepa Sivapirunthep, Korawan Sringarm, Chaiwat Arjin, Patipan Hnokaew, Kamon Chaweewan, Chanporn Chaosap
{"title":"宿主特异性和局部分离多菌株益生菌对仔猪生产性能、死亡率、炎症反应和肠道微生物组的影响","authors":"Katatikarn Sahatsanon, Panneepa Sivapirunthep, Korawan Sringarm, Chaiwat Arjin, Patipan Hnokaew, Kamon Chaweewan, Chanporn Chaosap","doi":"10.5713/ab.24.0556","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to assess the impact of host-specific and locally isolated multi-strain probiotics on piglet performance, mortality, inflammatory responses, and gut microbiome.</p><p><strong>Methods: </strong>A total of 52 piglet litters-34 from Landrace sows and 18 from Large White sows-were allocated to two groups: a control group and a multi-strain probiotic group. The probiotic group comprised seven strains of lactic acid bacteria (MLAB): Lactobacillus brevis, Lactobacillus reuteri, Lactobacillus paraplantarum, Lactococcus lactis, Lactobacillus pentosus, Weissella cibaria, and Pediococcus pentosaceus. Each strain was included in equal concentrations, resulting in a final liquid mixture containing 109 CFU/mL. The MLAB group received the probiotics orally starting from 7 days of age until weaning at four weeks. Following weaning, supplementation continued via feed spraying for an additional four weeks.</p><p><strong>Results: </strong>MLAB supplementation did not significantly affect piglet performance but showed a trend towards reducing the mortality rate (p = 0.06). It influenced the inflammatory response by upregulating the expression of anti-inflammatory cytokines interleukin (IL)-4 and IL-10 (p<0.05). Microbial community analysis indicated that MLAB supplementation increased both microbial diversity (Simpson index: p = 0.06) and species richness (Chao1 index: p = 0.02). Piglets receiving MLAB had a significantly higher abundance of the phylum Firmicutes (p<0.01) compared to the control group, while the abundance of the phylum Bacteroidota was markedly reduced (p<0.01). In addition, the relative abundance of the bacterial genera Prevotellaceae_NK3B31 (p<0.01) and Chlamydia (p = 0.03) was lower in the MLAB group.</p><p><strong>Conclusion: </strong>Overall, these results suggest that while MLAB supplementation does not directly improve piglet growth performance, it has the potential to improve immune function and promote a healthier gut microbiota in weaning piglets, which could ultimately reduce mortality rates.</p>","PeriodicalId":7825,"journal":{"name":"Animal Bioscience","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of host-specific and locally isolated multi-strain probiotics on piglet performance, mortality, inflammatory response, and gut microbiome.\",\"authors\":\"Katatikarn Sahatsanon, Panneepa Sivapirunthep, Korawan Sringarm, Chaiwat Arjin, Patipan Hnokaew, Kamon Chaweewan, Chanporn Chaosap\",\"doi\":\"10.5713/ab.24.0556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aimed to assess the impact of host-specific and locally isolated multi-strain probiotics on piglet performance, mortality, inflammatory responses, and gut microbiome.</p><p><strong>Methods: </strong>A total of 52 piglet litters-34 from Landrace sows and 18 from Large White sows-were allocated to two groups: a control group and a multi-strain probiotic group. The probiotic group comprised seven strains of lactic acid bacteria (MLAB): Lactobacillus brevis, Lactobacillus reuteri, Lactobacillus paraplantarum, Lactococcus lactis, Lactobacillus pentosus, Weissella cibaria, and Pediococcus pentosaceus. Each strain was included in equal concentrations, resulting in a final liquid mixture containing 109 CFU/mL. The MLAB group received the probiotics orally starting from 7 days of age until weaning at four weeks. Following weaning, supplementation continued via feed spraying for an additional four weeks.</p><p><strong>Results: </strong>MLAB supplementation did not significantly affect piglet performance but showed a trend towards reducing the mortality rate (p = 0.06). It influenced the inflammatory response by upregulating the expression of anti-inflammatory cytokines interleukin (IL)-4 and IL-10 (p<0.05). Microbial community analysis indicated that MLAB supplementation increased both microbial diversity (Simpson index: p = 0.06) and species richness (Chao1 index: p = 0.02). Piglets receiving MLAB had a significantly higher abundance of the phylum Firmicutes (p<0.01) compared to the control group, while the abundance of the phylum Bacteroidota was markedly reduced (p<0.01). In addition, the relative abundance of the bacterial genera Prevotellaceae_NK3B31 (p<0.01) and Chlamydia (p = 0.03) was lower in the MLAB group.</p><p><strong>Conclusion: </strong>Overall, these results suggest that while MLAB supplementation does not directly improve piglet growth performance, it has the potential to improve immune function and promote a healthier gut microbiota in weaning piglets, which could ultimately reduce mortality rates.</p>\",\"PeriodicalId\":7825,\"journal\":{\"name\":\"Animal Bioscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Bioscience\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5713/ab.24.0556\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Bioscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5713/ab.24.0556","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究旨在评估宿主特异性和局部分离的多菌株益生菌对仔猪生产性能、死亡率、炎症反应和肠道微生物组的影响:共有 52 窝仔猪--34 窝来自陆地母猪,18 窝来自大白母猪--被分配到两组:对照组和多菌株益生菌组。益生菌组由七种乳酸菌(MLAB)组成:乳酸菌(MLAB):布氏乳杆菌(Lactobacillus brevis)、纽特氏乳杆菌(Lactobacillus reuteri)、副干酪乳杆菌(Lactobacillus paraplantarum)、乳酸乳球菌(Lactococcus lactis)、戊糖乳杆菌(Lactobacillus pentosus)、魏氏菌(Weissella cibaria)和戊糖球菌(Pediococcus pentosaceus)。每种菌株的浓度相等,最终混合液的菌落总数为 109 CFU/mL。MLAB组从7日龄开始口服益生菌,直到4周龄断奶。断奶后,继续通过喷洒饲料补充益生菌四周:结果:补充 MLAB 对仔猪的生产性能没有明显影响,但有降低死亡率的趋势(p = 0.06)。它通过上调抗炎细胞因子白细胞介素(IL)-4 和 IL-10 的表达来影响炎症反应(p 结论:总之,这些结果表明,虽然补充 MLAB 不能直接改善仔猪的生长性能,但它有可能改善免疫功能,促进断奶仔猪肠道微生物群的健康,从而最终降低死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of host-specific and locally isolated multi-strain probiotics on piglet performance, mortality, inflammatory response, and gut microbiome.

Objective: This study aimed to assess the impact of host-specific and locally isolated multi-strain probiotics on piglet performance, mortality, inflammatory responses, and gut microbiome.

Methods: A total of 52 piglet litters-34 from Landrace sows and 18 from Large White sows-were allocated to two groups: a control group and a multi-strain probiotic group. The probiotic group comprised seven strains of lactic acid bacteria (MLAB): Lactobacillus brevis, Lactobacillus reuteri, Lactobacillus paraplantarum, Lactococcus lactis, Lactobacillus pentosus, Weissella cibaria, and Pediococcus pentosaceus. Each strain was included in equal concentrations, resulting in a final liquid mixture containing 109 CFU/mL. The MLAB group received the probiotics orally starting from 7 days of age until weaning at four weeks. Following weaning, supplementation continued via feed spraying for an additional four weeks.

Results: MLAB supplementation did not significantly affect piglet performance but showed a trend towards reducing the mortality rate (p = 0.06). It influenced the inflammatory response by upregulating the expression of anti-inflammatory cytokines interleukin (IL)-4 and IL-10 (p<0.05). Microbial community analysis indicated that MLAB supplementation increased both microbial diversity (Simpson index: p = 0.06) and species richness (Chao1 index: p = 0.02). Piglets receiving MLAB had a significantly higher abundance of the phylum Firmicutes (p<0.01) compared to the control group, while the abundance of the phylum Bacteroidota was markedly reduced (p<0.01). In addition, the relative abundance of the bacterial genera Prevotellaceae_NK3B31 (p<0.01) and Chlamydia (p = 0.03) was lower in the MLAB group.

Conclusion: Overall, these results suggest that while MLAB supplementation does not directly improve piglet growth performance, it has the potential to improve immune function and promote a healthier gut microbiota in weaning piglets, which could ultimately reduce mortality rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animal Bioscience
Animal Bioscience AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
5.00
自引率
0.00%
发文量
223
审稿时长
3 months
期刊最新文献
Proposing a strategy based on body-thermal status to improve the welfare of heat-stressed and water-deprived goats (Capra hircus). Dietary supplementation of protease and organic acid in poultry by-product meal-based diet in broilers. Effects of acute and chronic heat stress on the rumen microbiome in dairy goats. Investigation of single nucleotide polymorphisms in differentially expressed genes and proteins reveals the genetic basis of skeletal muscle growth differences between Tibetan and Large White pigs. Samae Dam chicken: a variety of the Pradu Hang Dam breed revealed from microsatellite genotyping data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1