Ratan Kumar Choudhary, Sunil Kumar B V, Chandra Sekhar Mukhopadhyay, Neeraj Kashyap, Vishal Sharma, Nisha Singh, Sina Salajegheh Tazerji, Roozbeh Kalantari, Pouneh Hajipour, Yashpal Singh Malik
{"title":"动物健康:多组学与综合策略的力量:多组学改善动物健康。","authors":"Ratan Kumar Choudhary, Sunil Kumar B V, Chandra Sekhar Mukhopadhyay, Neeraj Kashyap, Vishal Sharma, Nisha Singh, Sina Salajegheh Tazerji, Roozbeh Kalantari, Pouneh Hajipour, Yashpal Singh Malik","doi":"10.1155/2024/4125118","DOIUrl":null,"url":null,"abstract":"<p><p>The livestock industry faces significant challenges, with disease outbreaks being a particularly devastating issue. These diseases can disrupt the food supply chain and the livelihoods of those involved in the sector. To address this, there is a growing need to enhance the health and well-being of livestock animals, ultimately improving their performance while minimizing their environmental impact. To tackle the considerable challenge posed by disease epidemics, multiomics approaches offer an excellent opportunity for scientists, breeders, and policymakers to gain a comprehensive understanding of animal biology, pathogens, and their genetic makeup. This understanding is crucial for enhancing the health of livestock animals. Multiomic approaches, including phenomics, genomics, epigenomics, metabolomics, proteomics, transcriptomics, microbiomics, and metaproteomics, are widely employed to assess and enhance animal health. High-throughput phenotypic data collection allows for the measurement of various fitness traits, both discrete and continuous, which, when mathematically combined, define the overall health and resilience of animals, including their ability to withstand diseases. Omics methods are routinely used to identify genes involved in host-pathogen interactions, assess fitness traits, and pinpoint animals with disease resistance. Genome-wide association studies (GWAS) help identify the genetic factors associated with health status, heat stress tolerance, disease resistance, and other health-related characteristics, including the estimation of breeding value. Furthermore, the interaction between hosts and pathogens, as observed through the assessment of host gut microbiota, plays a crucial role in shaping animal health and, consequently, their performance. Integrating and analyzing various heterogeneous datasets to gain deeper insights into biological systems is a challenging task that necessitates the use of innovative tools. Initiatives like MiBiOmics, which facilitate the visualization, analysis, integration, and exploration of multiomics data, are expected to improve prediction accuracy and identify robust biomarkers linked to animal health. In this review, we discuss the details of multiomics concerning the health and well-being of livestock animals.</p>","PeriodicalId":23503,"journal":{"name":"Veterinary Medicine International","volume":"2024 ","pages":"4125118"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Animal Wellness: The Power of Multiomics and Integrative Strategies: Multiomics in Improving Animal Health.\",\"authors\":\"Ratan Kumar Choudhary, Sunil Kumar B V, Chandra Sekhar Mukhopadhyay, Neeraj Kashyap, Vishal Sharma, Nisha Singh, Sina Salajegheh Tazerji, Roozbeh Kalantari, Pouneh Hajipour, Yashpal Singh Malik\",\"doi\":\"10.1155/2024/4125118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The livestock industry faces significant challenges, with disease outbreaks being a particularly devastating issue. These diseases can disrupt the food supply chain and the livelihoods of those involved in the sector. To address this, there is a growing need to enhance the health and well-being of livestock animals, ultimately improving their performance while minimizing their environmental impact. To tackle the considerable challenge posed by disease epidemics, multiomics approaches offer an excellent opportunity for scientists, breeders, and policymakers to gain a comprehensive understanding of animal biology, pathogens, and their genetic makeup. This understanding is crucial for enhancing the health of livestock animals. Multiomic approaches, including phenomics, genomics, epigenomics, metabolomics, proteomics, transcriptomics, microbiomics, and metaproteomics, are widely employed to assess and enhance animal health. High-throughput phenotypic data collection allows for the measurement of various fitness traits, both discrete and continuous, which, when mathematically combined, define the overall health and resilience of animals, including their ability to withstand diseases. Omics methods are routinely used to identify genes involved in host-pathogen interactions, assess fitness traits, and pinpoint animals with disease resistance. Genome-wide association studies (GWAS) help identify the genetic factors associated with health status, heat stress tolerance, disease resistance, and other health-related characteristics, including the estimation of breeding value. Furthermore, the interaction between hosts and pathogens, as observed through the assessment of host gut microbiota, plays a crucial role in shaping animal health and, consequently, their performance. Integrating and analyzing various heterogeneous datasets to gain deeper insights into biological systems is a challenging task that necessitates the use of innovative tools. Initiatives like MiBiOmics, which facilitate the visualization, analysis, integration, and exploration of multiomics data, are expected to improve prediction accuracy and identify robust biomarkers linked to animal health. In this review, we discuss the details of multiomics concerning the health and well-being of livestock animals.</p>\",\"PeriodicalId\":23503,\"journal\":{\"name\":\"Veterinary Medicine International\",\"volume\":\"2024 \",\"pages\":\"4125118\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Medicine International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4125118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Medicine International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/4125118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Animal Wellness: The Power of Multiomics and Integrative Strategies: Multiomics in Improving Animal Health.
The livestock industry faces significant challenges, with disease outbreaks being a particularly devastating issue. These diseases can disrupt the food supply chain and the livelihoods of those involved in the sector. To address this, there is a growing need to enhance the health and well-being of livestock animals, ultimately improving their performance while minimizing their environmental impact. To tackle the considerable challenge posed by disease epidemics, multiomics approaches offer an excellent opportunity for scientists, breeders, and policymakers to gain a comprehensive understanding of animal biology, pathogens, and their genetic makeup. This understanding is crucial for enhancing the health of livestock animals. Multiomic approaches, including phenomics, genomics, epigenomics, metabolomics, proteomics, transcriptomics, microbiomics, and metaproteomics, are widely employed to assess and enhance animal health. High-throughput phenotypic data collection allows for the measurement of various fitness traits, both discrete and continuous, which, when mathematically combined, define the overall health and resilience of animals, including their ability to withstand diseases. Omics methods are routinely used to identify genes involved in host-pathogen interactions, assess fitness traits, and pinpoint animals with disease resistance. Genome-wide association studies (GWAS) help identify the genetic factors associated with health status, heat stress tolerance, disease resistance, and other health-related characteristics, including the estimation of breeding value. Furthermore, the interaction between hosts and pathogens, as observed through the assessment of host gut microbiota, plays a crucial role in shaping animal health and, consequently, their performance. Integrating and analyzing various heterogeneous datasets to gain deeper insights into biological systems is a challenging task that necessitates the use of innovative tools. Initiatives like MiBiOmics, which facilitate the visualization, analysis, integration, and exploration of multiomics data, are expected to improve prediction accuracy and identify robust biomarkers linked to animal health. In this review, we discuss the details of multiomics concerning the health and well-being of livestock animals.
期刊介绍:
Veterinary Medicine International is a peer-reviewed, Open Access journal that publishes original research articles and review articles in all areas of veterinary research. The journal will consider articles on the biological basis of disease, as well as diagnosis, prevention, treatment, and epidemiology.