用于透射电子显微镜的交叉激光相板。

ArXiv Pub Date : 2024-10-29
Petar N Petrov, Jessie T Zhang, Jeremy J Axelrod, Holger Müller
{"title":"用于透射电子显微镜的交叉激光相板。","authors":"Petar N Petrov, Jessie T Zhang, Jeremy J Axelrod, Holger Müller","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>For decades since the development of phase-contrast optical microscopy, an analogous approach has been sought for maximizing the image contrast of weakly-scattering objects in transmission electron microscopy (TEM). The recent development of the laser phase plate (LPP) has demonstrated that an amplified, focused laser standing wave provides stable, tunable phase shift to the high-energy electron beam, achieving phase-contrast TEM. Building on proof-of-concept experimental demonstrations, this paper explores design improvements tailored to biological imaging. In particular, we introduce the approach of crossed laser phase plates (XLPP): two laser standing waves intersecting in the diffraction plane of the TEM, rather than a single beam as in the current LPP. We provide a theoretical model for the XLPP inside the microscope and use simulations to quantify its effect on image formation. We find that the XLPP increases information transfer at low spatial frequencies while also suppressing the ghost images formed by Kapitza-Dirac diffraction of the electron beam by the laser beam. We also demonstrate a simple acquisition scheme, enabled by the XLPP, which dramatically suppresses unwanted diffraction effects. The results of this study chart the course for future developments of LPP hardware.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527100/pdf/","citationCount":"0","resultStr":"{\"title\":\"Crossed laser phase plates for transmission electron microscopy.\",\"authors\":\"Petar N Petrov, Jessie T Zhang, Jeremy J Axelrod, Holger Müller\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For decades since the development of phase-contrast optical microscopy, an analogous approach has been sought for maximizing the image contrast of weakly-scattering objects in transmission electron microscopy (TEM). The recent development of the laser phase plate (LPP) has demonstrated that an amplified, focused laser standing wave provides stable, tunable phase shift to the high-energy electron beam, achieving phase-contrast TEM. Building on proof-of-concept experimental demonstrations, this paper explores design improvements tailored to biological imaging. In particular, we introduce the approach of crossed laser phase plates (XLPP): two laser standing waves intersecting in the diffraction plane of the TEM, rather than a single beam as in the current LPP. We provide a theoretical model for the XLPP inside the microscope and use simulations to quantify its effect on image formation. We find that the XLPP increases information transfer at low spatial frequencies while also suppressing the ghost images formed by Kapitza-Dirac diffraction of the electron beam by the laser beam. We also demonstrate a simple acquisition scheme, enabled by the XLPP, which dramatically suppresses unwanted diffraction effects. The results of this study chart the course for future developments of LPP hardware.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527100/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自相位对比光学显微镜问世以来的几十年里,人们一直在寻找一种类似的方法,以最大限度地提高透射电子显微镜(TEM)中弱散射物体的图像对比度。最近开发的激光相位板(LPP)证明,经过放大、聚焦的激光驻波可为高能电子束提供稳定、可调的相移,从而实现相位对比 TEM。在概念验证实验演示的基础上,本文探讨了针对生物成像的改进设计。我们特别介绍了交叉激光相位板(XLPP)的方法:在 TEM 的衍射平面上有两个激光驻波相交,而不是像目前的 LPP 那样只有一束激光。我们为显微镜内的 XLPP 提供了一个理论模型,并通过模拟来量化它对图像形成的影响。我们发现,XLPP 增加了低空间频率下的信息传输,同时还抑制了激光束对电子束的 Kapitza-Dirac 衍射所形成的鬼影。我们还演示了一种由 XLPP 支持的简单采集方案,它能显著抑制不必要的衍射效应。这项研究成果为 LPP 硬件的未来发展指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crossed laser phase plates for transmission electron microscopy.

For decades since the development of phase-contrast optical microscopy, an analogous approach has been sought for maximizing the image contrast of weakly-scattering objects in transmission electron microscopy (TEM). The recent development of the laser phase plate (LPP) has demonstrated that an amplified, focused laser standing wave provides stable, tunable phase shift to the high-energy electron beam, achieving phase-contrast TEM. Building on proof-of-concept experimental demonstrations, this paper explores design improvements tailored to biological imaging. In particular, we introduce the approach of crossed laser phase plates (XLPP): two laser standing waves intersecting in the diffraction plane of the TEM, rather than a single beam as in the current LPP. We provide a theoretical model for the XLPP inside the microscope and use simulations to quantify its effect on image formation. We find that the XLPP increases information transfer at low spatial frequencies while also suppressing the ghost images formed by Kapitza-Dirac diffraction of the electron beam by the laser beam. We also demonstrate a simple acquisition scheme, enabled by the XLPP, which dramatically suppresses unwanted diffraction effects. The results of this study chart the course for future developments of LPP hardware.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metastability in networks of nonlinear stochastic integrate-and-fire neurons. On the linear scaling of entropy vs. energy in human brain activity, the Hagedorn temperature and the Zipf law. Timing consistency of T cell receptor activation in a stochastic model combining kinetic segregation and proofreading. Brain Morphology Normative modelling platform for abnormality and Centile estimation: Brain MoNoCle. Adversarial Attacks on Large Language Models in Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1