Nathan R. Zuniga, Dustin C. Frost, Karsten Kuhn, Myungsun Shin, Rebecca L. Whitehouse, Ting-Yu Wei, Yuchen He, Shane L. Dawson, Ian Pike, Ryan D. Bomgarden, Steven P. Gygi* and Joao A. Paulo*,
{"title":"通过氘结合实现 35 种复合串联质量标签试剂组合","authors":"Nathan R. Zuniga, Dustin C. Frost, Karsten Kuhn, Myungsun Shin, Rebecca L. Whitehouse, Ting-Yu Wei, Yuchen He, Shane L. Dawson, Ian Pike, Ryan D. Bomgarden, Steven P. Gygi* and Joao A. Paulo*, ","doi":"10.1021/acs.jproteome.4c0066810.1021/acs.jproteome.4c00668","DOIUrl":null,"url":null,"abstract":"<p >Mass spectrometry-based sample multiplexing with isobaric tags permits the development of high-throughput and precise quantitative biological assays with proteome-wide coverage and minimal missing values. Here, we nearly doubled the multiplexing capability of the TMTpro reagent set to a 35-plex through the incorporation of one deuterium isotope into the reporter group. Substituting deuterium frequently results in suboptimal peak coelution, which can compromise the accuracy of reporter ion-based quantification. To counteract the deuterium effect on quantitation, we implemented a strategy that necessitated the segregation of nondeuterium and deuterium-containing channels into distinct subplexes during normalization procedures, with reassembly through a common bridge channel. This multiplexing strategy of “design independent sub-plexes but acquire together” (DISAT) was used to compare protein expression differences between human cell lines and in a cysteine-profiling (i.e., chemoproteomics) experiment to identify compounds binding to cysteine-113 of Pin1.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving a 35-Plex Tandem Mass Tag Reagent Set through Deuterium Incorporation\",\"authors\":\"Nathan R. Zuniga, Dustin C. Frost, Karsten Kuhn, Myungsun Shin, Rebecca L. Whitehouse, Ting-Yu Wei, Yuchen He, Shane L. Dawson, Ian Pike, Ryan D. Bomgarden, Steven P. Gygi* and Joao A. Paulo*, \",\"doi\":\"10.1021/acs.jproteome.4c0066810.1021/acs.jproteome.4c00668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Mass spectrometry-based sample multiplexing with isobaric tags permits the development of high-throughput and precise quantitative biological assays with proteome-wide coverage and minimal missing values. Here, we nearly doubled the multiplexing capability of the TMTpro reagent set to a 35-plex through the incorporation of one deuterium isotope into the reporter group. Substituting deuterium frequently results in suboptimal peak coelution, which can compromise the accuracy of reporter ion-based quantification. To counteract the deuterium effect on quantitation, we implemented a strategy that necessitated the segregation of nondeuterium and deuterium-containing channels into distinct subplexes during normalization procedures, with reassembly through a common bridge channel. This multiplexing strategy of “design independent sub-plexes but acquire together” (DISAT) was used to compare protein expression differences between human cell lines and in a cysteine-profiling (i.e., chemoproteomics) experiment to identify compounds binding to cysteine-113 of Pin1.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00668\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00668","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Achieving a 35-Plex Tandem Mass Tag Reagent Set through Deuterium Incorporation
Mass spectrometry-based sample multiplexing with isobaric tags permits the development of high-throughput and precise quantitative biological assays with proteome-wide coverage and minimal missing values. Here, we nearly doubled the multiplexing capability of the TMTpro reagent set to a 35-plex through the incorporation of one deuterium isotope into the reporter group. Substituting deuterium frequently results in suboptimal peak coelution, which can compromise the accuracy of reporter ion-based quantification. To counteract the deuterium effect on quantitation, we implemented a strategy that necessitated the segregation of nondeuterium and deuterium-containing channels into distinct subplexes during normalization procedures, with reassembly through a common bridge channel. This multiplexing strategy of “design independent sub-plexes but acquire together” (DISAT) was used to compare protein expression differences between human cell lines and in a cysteine-profiling (i.e., chemoproteomics) experiment to identify compounds binding to cysteine-113 of Pin1.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".