Yongseok Kim, Katherine Kokkinias, Anice Sabag-Daigle, Ikaia Leleiwi, Mikayla Borton, Michael Shaffer, Maryam Baniasad, Rebecca Daly, Brian M. M. Ahmer, Kelly C. Wrighton and Vicki H. Wysocki*,
{"title":"时间分辨多组学图解沙门氏菌感染过程中宿主与肠道微生物的相互作用","authors":"Yongseok Kim, Katherine Kokkinias, Anice Sabag-Daigle, Ikaia Leleiwi, Mikayla Borton, Michael Shaffer, Maryam Baniasad, Rebecca Daly, Brian M. M. Ahmer, Kelly C. Wrighton and Vicki H. Wysocki*, ","doi":"10.1021/acs.jproteome.4c0017210.1021/acs.jproteome.4c00172","DOIUrl":null,"url":null,"abstract":"<p ><i>Salmonella</i> infection, also known as <i>Salmonellosis</i>, is one of the most common food-borne illnesses. <i>Salmonella</i> infection can trigger host defensive functions, including an inflammatory response. The provoked-host inflammatory response has a significant impact on the bacterial population in the gut. In addition, <i>Salmonella</i> competes with other gut microorganisms for survival and growth within the host. Compositional and functional alterations in gut bacteria occur because of the host immunological response and competition between <i>Salmonella</i> and the gut microbiome. Host variation and the inherent complexity of the gut microbial community make understanding commensal and pathogen interactions particularly difficult during a <i>Salmonella</i> infection. Here, we present metabolomics and lipidomics analyses along with the 16S rRNA sequence analysis, revealing a comprehensive view of the metabolic interactions between the host and gut microbiota during <i>Salmonella</i> infection in a CBA/J mouse model. We found that different metabolic pathways were altered over the four investigated time points of <i>Salmonella</i> infection (days −2, +2, +6, and +13). Furthermore, metatranscriptomics analysis integrated with metabolomics and lipidomics analysis facilitated an understanding of the heterogeneous response of mice, depending on the degree of dysbiosis.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Resolved Multiomics Illustrates Host and Gut Microbe Interactions during Salmonella Infection\",\"authors\":\"Yongseok Kim, Katherine Kokkinias, Anice Sabag-Daigle, Ikaia Leleiwi, Mikayla Borton, Michael Shaffer, Maryam Baniasad, Rebecca Daly, Brian M. M. Ahmer, Kelly C. Wrighton and Vicki H. Wysocki*, \",\"doi\":\"10.1021/acs.jproteome.4c0017210.1021/acs.jproteome.4c00172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p ><i>Salmonella</i> infection, also known as <i>Salmonellosis</i>, is one of the most common food-borne illnesses. <i>Salmonella</i> infection can trigger host defensive functions, including an inflammatory response. The provoked-host inflammatory response has a significant impact on the bacterial population in the gut. In addition, <i>Salmonella</i> competes with other gut microorganisms for survival and growth within the host. Compositional and functional alterations in gut bacteria occur because of the host immunological response and competition between <i>Salmonella</i> and the gut microbiome. Host variation and the inherent complexity of the gut microbial community make understanding commensal and pathogen interactions particularly difficult during a <i>Salmonella</i> infection. Here, we present metabolomics and lipidomics analyses along with the 16S rRNA sequence analysis, revealing a comprehensive view of the metabolic interactions between the host and gut microbiota during <i>Salmonella</i> infection in a CBA/J mouse model. We found that different metabolic pathways were altered over the four investigated time points of <i>Salmonella</i> infection (days −2, +2, +6, and +13). Furthermore, metatranscriptomics analysis integrated with metabolomics and lipidomics analysis facilitated an understanding of the heterogeneous response of mice, depending on the degree of dysbiosis.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00172\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00172","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Time-Resolved Multiomics Illustrates Host and Gut Microbe Interactions during Salmonella Infection
Salmonella infection, also known as Salmonellosis, is one of the most common food-borne illnesses. Salmonella infection can trigger host defensive functions, including an inflammatory response. The provoked-host inflammatory response has a significant impact on the bacterial population in the gut. In addition, Salmonella competes with other gut microorganisms for survival and growth within the host. Compositional and functional alterations in gut bacteria occur because of the host immunological response and competition between Salmonella and the gut microbiome. Host variation and the inherent complexity of the gut microbial community make understanding commensal and pathogen interactions particularly difficult during a Salmonella infection. Here, we present metabolomics and lipidomics analyses along with the 16S rRNA sequence analysis, revealing a comprehensive view of the metabolic interactions between the host and gut microbiota during Salmonella infection in a CBA/J mouse model. We found that different metabolic pathways were altered over the four investigated time points of Salmonella infection (days −2, +2, +6, and +13). Furthermore, metatranscriptomics analysis integrated with metabolomics and lipidomics analysis facilitated an understanding of the heterogeneous response of mice, depending on the degree of dysbiosis.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".