Wujie Chen, Qihua Ye, Biying Zhang, Zhenhua Ma* and Hanxiao Tu*,
{"title":"通过组织蛋白质组学和临床验证确定 FGG 作为早期胃癌的生物标记物","authors":"Wujie Chen, Qihua Ye, Biying Zhang, Zhenhua Ma* and Hanxiao Tu*, ","doi":"10.1021/acs.jproteome.4c0062410.1021/acs.jproteome.4c00624","DOIUrl":null,"url":null,"abstract":"<p >Early and accurate diagnosis of gastric cancer (GC) is essential for reducing mortality and improving patient well-being. However, methods for the early diagnosis of GC are still lacking. In this study, by isobaric tagging for relative and absolute quantitation (iTRAQ), we identified 336 proteins that overlapped among the upregulated differentially expressed proteins (DEPs) in early gastric cancer (EGC) versus progressive gastric cancer (PGC), upregulated DEPs in EGC versus nongastric cancer (NGC), and nonsignificant proteins in EGC versus NGC. These DEPs were involved primarily in the neutrophil-related immune response. Network analysis of proteins and pathways revealed that fibrinogen α (FGA), β (FGB), and γ (FGG) are candidates for distinguishing EGC. Furthermore, parallel reaction monitoring (PRM), immunohistochemistry (IHC), and Western blot (WB) assays of clinical samples confirmed that, compared with that in PGC and NGC, only FGG was uniquely and significantly upregulated in the gastric mucosa of EGC. Our results demonstrated that FGG in the gastric mucosa could be a novel biomarker to diagnose EGC patients via endoscopy.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of FGG as a Biomarker in Early Gastric Cancer via Tissue Proteomics and Clinical Verification\",\"authors\":\"Wujie Chen, Qihua Ye, Biying Zhang, Zhenhua Ma* and Hanxiao Tu*, \",\"doi\":\"10.1021/acs.jproteome.4c0062410.1021/acs.jproteome.4c00624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Early and accurate diagnosis of gastric cancer (GC) is essential for reducing mortality and improving patient well-being. However, methods for the early diagnosis of GC are still lacking. In this study, by isobaric tagging for relative and absolute quantitation (iTRAQ), we identified 336 proteins that overlapped among the upregulated differentially expressed proteins (DEPs) in early gastric cancer (EGC) versus progressive gastric cancer (PGC), upregulated DEPs in EGC versus nongastric cancer (NGC), and nonsignificant proteins in EGC versus NGC. These DEPs were involved primarily in the neutrophil-related immune response. Network analysis of proteins and pathways revealed that fibrinogen α (FGA), β (FGB), and γ (FGG) are candidates for distinguishing EGC. Furthermore, parallel reaction monitoring (PRM), immunohistochemistry (IHC), and Western blot (WB) assays of clinical samples confirmed that, compared with that in PGC and NGC, only FGG was uniquely and significantly upregulated in the gastric mucosa of EGC. Our results demonstrated that FGG in the gastric mucosa could be a novel biomarker to diagnose EGC patients via endoscopy.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00624\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00624","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Identification of FGG as a Biomarker in Early Gastric Cancer via Tissue Proteomics and Clinical Verification
Early and accurate diagnosis of gastric cancer (GC) is essential for reducing mortality and improving patient well-being. However, methods for the early diagnosis of GC are still lacking. In this study, by isobaric tagging for relative and absolute quantitation (iTRAQ), we identified 336 proteins that overlapped among the upregulated differentially expressed proteins (DEPs) in early gastric cancer (EGC) versus progressive gastric cancer (PGC), upregulated DEPs in EGC versus nongastric cancer (NGC), and nonsignificant proteins in EGC versus NGC. These DEPs were involved primarily in the neutrophil-related immune response. Network analysis of proteins and pathways revealed that fibrinogen α (FGA), β (FGB), and γ (FGG) are candidates for distinguishing EGC. Furthermore, parallel reaction monitoring (PRM), immunohistochemistry (IHC), and Western blot (WB) assays of clinical samples confirmed that, compared with that in PGC and NGC, only FGG was uniquely and significantly upregulated in the gastric mucosa of EGC. Our results demonstrated that FGG in the gastric mucosa could be a novel biomarker to diagnose EGC patients via endoscopy.