随机 Kuramoto-Sivashinsky 方程的后向问题:条件稳定性和数值解

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-10-22 DOI:10.1016/j.jmaa.2024.128988
Zewen Wang , Weili Zhu , Bin Wu , Bin Hu
{"title":"随机 Kuramoto-Sivashinsky 方程的后向问题:条件稳定性和数值解","authors":"Zewen Wang ,&nbsp;Weili Zhu ,&nbsp;Bin Wu ,&nbsp;Bin Hu","doi":"10.1016/j.jmaa.2024.128988","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a backward problem in time for a linear stochastic Kuramoto-Sivashinsky equation. Firstly, we present two Carleman estimates incorporating weight functions independent of the variable <em>x</em> for the stochastic Kuramoto-Sivashinsky equation. Subsequently, we employ these two Carleman estimates to establish conditional stability for the backward problem in two distinct scenarios: when <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mi>T</mi></math></span> and when <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>. Lastly, we transform the backward problem in time into the minimization of a regularized Tikhonov functional. This functional is solved by the conjugate gradient algorithm based on the gradient formula tailored for the regularized functional. Numerical examples related to the recovery of continuous and discontinuous initial values illustrate the effectiveness of the conjugate gradient algorithm.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A backward problem for stochastic Kuramoto-Sivashinsky equation: Conditional stability and numerical solution\",\"authors\":\"Zewen Wang ,&nbsp;Weili Zhu ,&nbsp;Bin Wu ,&nbsp;Bin Hu\",\"doi\":\"10.1016/j.jmaa.2024.128988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider a backward problem in time for a linear stochastic Kuramoto-Sivashinsky equation. Firstly, we present two Carleman estimates incorporating weight functions independent of the variable <em>x</em> for the stochastic Kuramoto-Sivashinsky equation. Subsequently, we employ these two Carleman estimates to establish conditional stability for the backward problem in two distinct scenarios: when <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mi>T</mi></math></span> and when <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>. Lastly, we transform the backward problem in time into the minimization of a regularized Tikhonov functional. This functional is solved by the conjugate gradient algorithm based on the gradient formula tailored for the regularized functional. Numerical examples related to the recovery of continuous and discontinuous initial values illustrate the effectiveness of the conjugate gradient algorithm.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009107\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009107","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了线性随机 Kuramoto-Sivashinsky 方程的时间反演问题。首先,我们为随机 Kuramoto-Sivashinsky 方程提出了两个 Carleman 估计值,其中包含与变量 x 无关的权重函数。随后,我们利用这两个卡勒曼估计值建立了后向问题在两种不同情况下的条件稳定性:0<t0<T 时和 t0=0 时。该函数通过共轭梯度算法求解,该算法基于为正则化函数量身定制的梯度公式。与恢复连续和不连续初始值有关的数值示例说明了共轭梯度算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A backward problem for stochastic Kuramoto-Sivashinsky equation: Conditional stability and numerical solution
In this paper, we consider a backward problem in time for a linear stochastic Kuramoto-Sivashinsky equation. Firstly, we present two Carleman estimates incorporating weight functions independent of the variable x for the stochastic Kuramoto-Sivashinsky equation. Subsequently, we employ these two Carleman estimates to establish conditional stability for the backward problem in two distinct scenarios: when 0<t0<T and when t0=0. Lastly, we transform the backward problem in time into the minimization of a regularized Tikhonov functional. This functional is solved by the conjugate gradient algorithm based on the gradient formula tailored for the regularized functional. Numerical examples related to the recovery of continuous and discontinuous initial values illustrate the effectiveness of the conjugate gradient algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1