用于 TFF 分析的优化同步queezed 小数小波变换及其应用

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Digital Signal Processing Pub Date : 2024-10-28 DOI:10.1016/j.dsp.2024.104819
Yong Guo , Lidong Yang
{"title":"用于 TFF 分析的优化同步queezed 小数小波变换及其应用","authors":"Yong Guo ,&nbsp;Lidong Yang","doi":"10.1016/j.dsp.2024.104819","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the resolution of synchrosqueezing transform (SST) in non-stationary signal representation, an optimization synchrosqueezed fractional wavelet transform (SSFRWT) is proposed, which possesses rigorous mathematical principle and high resolution. First, the definition, properties, and principles of SSFRWT are presented. On this basis, a time-fractional-frequency (TFF) analysis method is established utilizing SSFRWT. The experimental results demonstrate that SSFRWT is capable of establishing a high-resolution TFF representation for chirp-type signals, surpassing existing methods in terms of noise robustness and energy concentration. Lastly, leveraging the signal TFF representation, SSFRWT is successfully applied to the chirp signal parameter estimation and multi-component signal separation, yielding superior estimation results and reconstructed signal compared to SST. Notably, SSFRWT is also innovatively employed in the field of optical measurement, achieving high-precision measurement of the curvature radius of convex lens.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104819"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimization synchrosqueezed fractional wavelet transform for TFF analysis and its applications\",\"authors\":\"Yong Guo ,&nbsp;Lidong Yang\",\"doi\":\"10.1016/j.dsp.2024.104819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To enhance the resolution of synchrosqueezing transform (SST) in non-stationary signal representation, an optimization synchrosqueezed fractional wavelet transform (SSFRWT) is proposed, which possesses rigorous mathematical principle and high resolution. First, the definition, properties, and principles of SSFRWT are presented. On this basis, a time-fractional-frequency (TFF) analysis method is established utilizing SSFRWT. The experimental results demonstrate that SSFRWT is capable of establishing a high-resolution TFF representation for chirp-type signals, surpassing existing methods in terms of noise robustness and energy concentration. Lastly, leveraging the signal TFF representation, SSFRWT is successfully applied to the chirp signal parameter estimation and multi-component signal separation, yielding superior estimation results and reconstructed signal compared to SST. Notably, SSFRWT is also innovatively employed in the field of optical measurement, achieving high-precision measurement of the curvature radius of convex lens.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"156 \",\"pages\":\"Article 104819\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200424004445\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004445","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了提高同步阙值变换(SST)在非平稳信号表示中的分辨率,提出了一种优化同步阙值分数小波变换(SSFRWT),它具有严谨的数学原理和高分辨率。首先,介绍了 SSFRWT 的定义、特性和原理。在此基础上,利用 SSFRWT 建立了时间-分数-频率(TFF)分析方法。实验结果表明,SSFRWT 能够为啁啾信号建立高分辨率的 TFF 表示,在噪声鲁棒性和能量集中方面超越了现有方法。最后,利用信号 TFF 表示,SSFRWT 成功应用于啁啾信号参数估计和多分量信号分离,与 SST 相比,获得了更优越的估计结果和重建信号。值得一提的是,SSFRWT 还创新性地应用于光学测量领域,实现了凸透镜曲率半径的高精度测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An optimization synchrosqueezed fractional wavelet transform for TFF analysis and its applications
To enhance the resolution of synchrosqueezing transform (SST) in non-stationary signal representation, an optimization synchrosqueezed fractional wavelet transform (SSFRWT) is proposed, which possesses rigorous mathematical principle and high resolution. First, the definition, properties, and principles of SSFRWT are presented. On this basis, a time-fractional-frequency (TFF) analysis method is established utilizing SSFRWT. The experimental results demonstrate that SSFRWT is capable of establishing a high-resolution TFF representation for chirp-type signals, surpassing existing methods in terms of noise robustness and energy concentration. Lastly, leveraging the signal TFF representation, SSFRWT is successfully applied to the chirp signal parameter estimation and multi-component signal separation, yielding superior estimation results and reconstructed signal compared to SST. Notably, SSFRWT is also innovatively employed in the field of optical measurement, achieving high-precision measurement of the curvature radius of convex lens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
期刊最新文献
Integrating wavelet transformation for end-to-end direct signal classification ALFusion: Adaptive fusion for infrared and visible images under complex lighting conditions Zero-feedback open-loop distributed transmit beamforming Adaptive polarimetric persymmetric detection for distributed subspace targets in lognormal texture clutter Synthetic Augmented L-shaped Array design and 2D Cramér-Rao bound analysis based on Vertical-Horizontal Moving Scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1