{"title":"利用双钠盐绿色自模板合成掺杂 P 的介孔碳,改善电容式去离子的平均孔径","authors":"Hua Qiang, Mingxing Shi, Keren Lu, Fengyun Wang, Mingzhu Xia","doi":"10.1016/j.desal.2024.118246","DOIUrl":null,"url":null,"abstract":"<div><div>Mesoporous carbon materials hold significant potential in capacitive deionization (CDI) technology owing to expansive accessible surface area, more adaptable pore structure, excellent conductivity properties and effective surface modification and functionalization. While templating is a common method for synthesizing mesoporous carbons, the commonly used hard and soft templating approaches among them suffer from the challenges of expensive precursors and templating agents, complex procedures, secondary contaminants and difficulties in template removal. In contrast, the self-templating method not only circumvents the traditional template removal or combustion steps but also eliminates the use of organic solvents and hazardous chemicals, thus minimizing environmental impact. In this paper, we have successfully synthesized phosphorus-doped mesoporous carbon with a large average pore size (p<sub>aver</sub>) using a green and convenient self-templating method employing dual sodium salts of sodium alginate (SA) and sodium phytate (SP). Compared to single SA (6.76 nm) or SP (3.74 nm) self-templated carbonization, the average pore size of carbon materials obtained from dual self-templated carbonization with a proportional mixture (12.97 nm) is significantly improved. The larger average pore size provides a greater surface area for electrode-electrolyte interactions, allowing for easier access and faster diffusion of ions into the pores, thereby enhancing the electrochemical and capacitive deionization properties of the material. The resulting material demonstrates promising electrochemical and desalination performance as evidenced by possessing a specific capacitance of 175.8 A/g and an adsorption capacity of 19.65 mg/g, underlining its potential for application in capacitive deionization utilizing mesoporous carbon materials with large average pore size.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118246"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green self-templated synthesis of P-doped mesoporous carbon from dual sodium salts with improved average pore size for capacitive deionization\",\"authors\":\"Hua Qiang, Mingxing Shi, Keren Lu, Fengyun Wang, Mingzhu Xia\",\"doi\":\"10.1016/j.desal.2024.118246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mesoporous carbon materials hold significant potential in capacitive deionization (CDI) technology owing to expansive accessible surface area, more adaptable pore structure, excellent conductivity properties and effective surface modification and functionalization. While templating is a common method for synthesizing mesoporous carbons, the commonly used hard and soft templating approaches among them suffer from the challenges of expensive precursors and templating agents, complex procedures, secondary contaminants and difficulties in template removal. In contrast, the self-templating method not only circumvents the traditional template removal or combustion steps but also eliminates the use of organic solvents and hazardous chemicals, thus minimizing environmental impact. In this paper, we have successfully synthesized phosphorus-doped mesoporous carbon with a large average pore size (p<sub>aver</sub>) using a green and convenient self-templating method employing dual sodium salts of sodium alginate (SA) and sodium phytate (SP). Compared to single SA (6.76 nm) or SP (3.74 nm) self-templated carbonization, the average pore size of carbon materials obtained from dual self-templated carbonization with a proportional mixture (12.97 nm) is significantly improved. The larger average pore size provides a greater surface area for electrode-electrolyte interactions, allowing for easier access and faster diffusion of ions into the pores, thereby enhancing the electrochemical and capacitive deionization properties of the material. The resulting material demonstrates promising electrochemical and desalination performance as evidenced by possessing a specific capacitance of 175.8 A/g and an adsorption capacity of 19.65 mg/g, underlining its potential for application in capacitive deionization utilizing mesoporous carbon materials with large average pore size.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"593 \",\"pages\":\"Article 118246\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916424009573\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009573","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Green self-templated synthesis of P-doped mesoporous carbon from dual sodium salts with improved average pore size for capacitive deionization
Mesoporous carbon materials hold significant potential in capacitive deionization (CDI) technology owing to expansive accessible surface area, more adaptable pore structure, excellent conductivity properties and effective surface modification and functionalization. While templating is a common method for synthesizing mesoporous carbons, the commonly used hard and soft templating approaches among them suffer from the challenges of expensive precursors and templating agents, complex procedures, secondary contaminants and difficulties in template removal. In contrast, the self-templating method not only circumvents the traditional template removal or combustion steps but also eliminates the use of organic solvents and hazardous chemicals, thus minimizing environmental impact. In this paper, we have successfully synthesized phosphorus-doped mesoporous carbon with a large average pore size (paver) using a green and convenient self-templating method employing dual sodium salts of sodium alginate (SA) and sodium phytate (SP). Compared to single SA (6.76 nm) or SP (3.74 nm) self-templated carbonization, the average pore size of carbon materials obtained from dual self-templated carbonization with a proportional mixture (12.97 nm) is significantly improved. The larger average pore size provides a greater surface area for electrode-electrolyte interactions, allowing for easier access and faster diffusion of ions into the pores, thereby enhancing the electrochemical and capacitive deionization properties of the material. The resulting material demonstrates promising electrochemical and desalination performance as evidenced by possessing a specific capacitance of 175.8 A/g and an adsorption capacity of 19.65 mg/g, underlining its potential for application in capacitive deionization utilizing mesoporous carbon materials with large average pore size.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.