液滴玻璃化过程的数值和实验研究:用于低温保存的热流体分析

IF 2.3 3区 生物学 Q2 BIOLOGY Cryobiology Pub Date : 2024-10-31 DOI:10.1016/j.cryobiol.2024.105156
Alisson R.S. Silva , Jacqueline B. Copetti , André C. Monteiro , Marcelo Gotardo , Jeferson D. de Oliveira , Mario H. Macagnan , Elaine M. Cardoso , Karolyn Ogliari
{"title":"液滴玻璃化过程的数值和实验研究:用于低温保存的热流体分析","authors":"Alisson R.S. Silva ,&nbsp;Jacqueline B. Copetti ,&nbsp;André C. Monteiro ,&nbsp;Marcelo Gotardo ,&nbsp;Jeferson D. de Oliveira ,&nbsp;Mario H. Macagnan ,&nbsp;Elaine M. Cardoso ,&nbsp;Karolyn Ogliari","doi":"10.1016/j.cryobiol.2024.105156","DOIUrl":null,"url":null,"abstract":"<div><div>One of the biggest challenges in studying vitrification protocols for small volumes of biological materials, especially the microdroplet vitrification protocol, is measuring the solidification rate, requiring equipment with a high level of technology, making it practically impossible to measure the degree of crystallization. An alternative is using mathematical models applied in computer simulations (CFD), helping to improve and develop new vitrification protocols. This study investigates the vitrification process utilizing the microdroplet method through experimental and numerical analysis. Droplets of mineralized water are deposited onto a copper substrate, temperature data is collected, and images of the process are taken with a high-speed camera. Numerical simulations are performed using ANSYS Fluent® software to analyze temperature and solidification behavior. Droplet contact angle measurements are also conducted to determine boundary conditions for numerical simulations. Mesh refinement is conducted using the Grid Convergence Index method, ensuring accuracy in computational results. The simulations employ a solidification model, considering phase enthalpy and thermal properties of the droplet, environment, and substrate. Results show good agreement between numerical and experimental data regarding solidification dynamics and temperature profiles. Furthermore, the study examines the influence of cooling surface geometry on the vitrification process. The contact area between the droplet and the surface increases by machining a cavity on the copper substrate, leading to enhanced cooling rates and reduced stabilization time. This research provides insights into optimizing vitrification processes, contributing to advancements in cryopreservation and material science applications.</div></div>","PeriodicalId":10897,"journal":{"name":"Cryobiology","volume":"117 ","pages":"Article 105156"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and experimental investigation of a droplet vitrification process: A thermofluidic analysis for cryopreservation\",\"authors\":\"Alisson R.S. Silva ,&nbsp;Jacqueline B. Copetti ,&nbsp;André C. Monteiro ,&nbsp;Marcelo Gotardo ,&nbsp;Jeferson D. de Oliveira ,&nbsp;Mario H. Macagnan ,&nbsp;Elaine M. Cardoso ,&nbsp;Karolyn Ogliari\",\"doi\":\"10.1016/j.cryobiol.2024.105156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the biggest challenges in studying vitrification protocols for small volumes of biological materials, especially the microdroplet vitrification protocol, is measuring the solidification rate, requiring equipment with a high level of technology, making it practically impossible to measure the degree of crystallization. An alternative is using mathematical models applied in computer simulations (CFD), helping to improve and develop new vitrification protocols. This study investigates the vitrification process utilizing the microdroplet method through experimental and numerical analysis. Droplets of mineralized water are deposited onto a copper substrate, temperature data is collected, and images of the process are taken with a high-speed camera. Numerical simulations are performed using ANSYS Fluent® software to analyze temperature and solidification behavior. Droplet contact angle measurements are also conducted to determine boundary conditions for numerical simulations. Mesh refinement is conducted using the Grid Convergence Index method, ensuring accuracy in computational results. The simulations employ a solidification model, considering phase enthalpy and thermal properties of the droplet, environment, and substrate. Results show good agreement between numerical and experimental data regarding solidification dynamics and temperature profiles. Furthermore, the study examines the influence of cooling surface geometry on the vitrification process. The contact area between the droplet and the surface increases by machining a cavity on the copper substrate, leading to enhanced cooling rates and reduced stabilization time. This research provides insights into optimizing vitrification processes, contributing to advancements in cryopreservation and material science applications.</div></div>\",\"PeriodicalId\":10897,\"journal\":{\"name\":\"Cryobiology\",\"volume\":\"117 \",\"pages\":\"Article 105156\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011224024003110\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryobiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011224024003110","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在研究小体积生物材料玻璃化方案,特别是微滴玻璃化方案时,最大的挑战之一是测量凝固速率,这需要高技术水平的设备,因此实际上无法测量结晶程度。另一种方法是利用计算机模拟(CFD)中应用的数学模型,帮助改进和开发新的玻璃化方案。本研究通过实验和数值分析,利用微液滴法研究玻璃化过程。将矿化水滴沉积到铜基板上,收集温度数据,并用高速相机拍摄过程图像。使用 ANSYS Fluent® 软件进行数值模拟,分析温度和凝固行为。还进行了液滴接触角测量,以确定数值模拟的边界条件。网格细化采用网格收敛指数法,以确保计算结果的准确性。模拟采用了凝固模型,考虑了液滴、环境和基底的相焓和热特性。结果表明,数值和实验数据在凝固动力学和温度曲线方面具有良好的一致性。此外,研究还探讨了冷却表面几何形状对玻璃化过程的影响。通过在铜基底上加工一个空腔,增加了液滴与表面的接触面积,从而提高了冷却速度,缩短了稳定时间。这项研究为优化玻璃化过程提供了见解,有助于推动低温保存和材料科学应用的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical and experimental investigation of a droplet vitrification process: A thermofluidic analysis for cryopreservation
One of the biggest challenges in studying vitrification protocols for small volumes of biological materials, especially the microdroplet vitrification protocol, is measuring the solidification rate, requiring equipment with a high level of technology, making it practically impossible to measure the degree of crystallization. An alternative is using mathematical models applied in computer simulations (CFD), helping to improve and develop new vitrification protocols. This study investigates the vitrification process utilizing the microdroplet method through experimental and numerical analysis. Droplets of mineralized water are deposited onto a copper substrate, temperature data is collected, and images of the process are taken with a high-speed camera. Numerical simulations are performed using ANSYS Fluent® software to analyze temperature and solidification behavior. Droplet contact angle measurements are also conducted to determine boundary conditions for numerical simulations. Mesh refinement is conducted using the Grid Convergence Index method, ensuring accuracy in computational results. The simulations employ a solidification model, considering phase enthalpy and thermal properties of the droplet, environment, and substrate. Results show good agreement between numerical and experimental data regarding solidification dynamics and temperature profiles. Furthermore, the study examines the influence of cooling surface geometry on the vitrification process. The contact area between the droplet and the surface increases by machining a cavity on the copper substrate, leading to enhanced cooling rates and reduced stabilization time. This research provides insights into optimizing vitrification processes, contributing to advancements in cryopreservation and material science applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryobiology
Cryobiology 生物-生理学
CiteScore
5.40
自引率
7.40%
发文量
71
审稿时长
56 days
期刊介绍: Cryobiology: International Journal of Low Temperature Biology and Medicine publishes research articles on all aspects of low temperature biology and medicine. Research Areas include: • Cryoprotective additives and their pharmacological actions • Cryosurgery • Freeze-drying • Freezing • Frost hardiness in plants • Hibernation • Hypothermia • Medical applications of reduced temperature • Perfusion of organs • All pertinent methodologies Cryobiology is the official journal of the Society for Cryobiology.
期刊最新文献
Evaluating shoot-tip regrowth of 25 Rubus L. species and hybrids after 15 to 20 years of cryopreserved storage. No synergistic effect of extracellular cryoprotectants with dimethyl sulfoxide in the conservation of northern tiger cat fibroblasts. Effects of alpha-lipoic acid and sildenafil citrate on sperm quality in asthenozoospermic men during freezing-thawing processes. Effects of oxidative stress on the changes of viability of Paeonia lactiflora seeds with different water content before and after cryopreservation. KCl enhances the cryoablation-induced antitumor immune response: A hepatocellular carcinoma murine model research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1