神经退行性疾病中的 cGAS-STING 通路通过细胞和分子机制驱动神经炎症和神经退行性病变

IF 5.1 2区 医学 Q1 NEUROSCIENCES Neurobiology of Disease Pub Date : 2024-11-01 DOI:10.1016/j.nbd.2024.106710
Yuxin Zhang , Meijuan Zou , Hao Wu , Jie Zhu , Tao Jin
{"title":"神经退行性疾病中的 cGAS-STING 通路通过细胞和分子机制驱动神经炎症和神经退行性病变","authors":"Yuxin Zhang ,&nbsp;Meijuan Zou ,&nbsp;Hao Wu ,&nbsp;Jie Zhu ,&nbsp;Tao Jin","doi":"10.1016/j.nbd.2024.106710","DOIUrl":null,"url":null,"abstract":"<div><div>Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"202 ","pages":"Article 106710"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases\",\"authors\":\"Yuxin Zhang ,&nbsp;Meijuan Zou ,&nbsp;Hao Wu ,&nbsp;Jie Zhu ,&nbsp;Tao Jin\",\"doi\":\"10.1016/j.nbd.2024.106710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.</div></div>\",\"PeriodicalId\":19097,\"journal\":{\"name\":\"Neurobiology of Disease\",\"volume\":\"202 \",\"pages\":\"Article 106710\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969996124003115\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969996124003115","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病(NDs)是一种常见的慢性进行性疾病,其特征是神经系统中的特定细胞群逐渐受损,最终导致残疾或死亡。这些疾病的病因涉及多种细胞和分子途径,由于对病因的了解有限,目前仍缺乏有效的治疗方法。引发免疫反应是神经退行性疾病的一个共同特征。神经炎症、神经退行性病变和免疫反应之间错综复杂的相互作用是一个严峻的挑战,而这些因素的特征尚未完全确定。近年来,环GMP-AMP合成酶(cGAS)-干扰素基因刺激器(STING)通路逐渐受到关注,它是细胞内DNA感应的关键免疫反应。然而,该通路在免疫细胞、神经胶质细胞和神经元细胞等细胞类型中的具体作用及其对 ND 发病机制的贡献仍未完全阐明。在这篇综述中,我们系统地探讨了 cGAS-STING 信号如何在 ND 的背景下将各种细胞类型与相关的细胞效应通路联系起来,从而为多方面的治疗指明方向。我们强调了在 cGAS-STING 通路中发现的条件依赖性细胞异质性,这对于理解不同的细胞反应和潜在的治疗靶点是不可或缺的。此外,我们还回顾了 cGAS-STING 激活在帕金森病、共济失调性脊髓侧索硬化症和肌萎缩侧索硬化症中的致病作用。我们重点研究了 cGAS-STING 通路在阿尔茨海默病、亨廷顿氏病和多发性硬化症中复杂的双向作用,揭示了其在疾病进展中的双刃性。本综述旨在阐明 cGAS-STING 通路在 ND 发病机制中的关键作用,并为促进新型治疗策略的开发提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
期刊最新文献
Alpha-synuclein pathology enhances peripheral and CNS immune responses to bacterial endotoxins. Synaptic modulation of glutamate in striatum of the YAC128 mouse model of Huntington disease. Globular-shaped Aβ oligomers have diverse mechanisms for promoting Aβ aggregations with the facilitation of fibril elongation. Peripheral nerve injury induces dystonia-like movements and dysregulation in the energy metabolism: A multi-omics descriptive study in Thap1+/- mice. Spectral and coupling characteristics of somatosensory cortex and centromedian thalamus differentiate between pre- and inter-ictal 5-9 Hz oscillations in a genetic rat model of absence epilepsy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1