Andreas Lius, Magnus Sjöberg, Andreas Cronhjort, Ulf Olofsson
{"title":"利用直接喷水技术实现计量甲醇自燃和抑制循环内爆震","authors":"Andreas Lius, Magnus Sjöberg, Andreas Cronhjort, Ulf Olofsson","doi":"10.1016/j.enconman.2024.119174","DOIUrl":null,"url":null,"abstract":"<div><div>Methanol as a fuel is gaining popularity due to its favorable properties and potential for sustainable production as bio- or electro-methanol. By operating according to the Spark-Ignited (SI) principle with a Three-Way Catalyst (TWC), low emissions can be achieved. The main phenomena limiting the efficiency of the SI engine when operating with stoichiometric mixtures are knock and, occasionally, pre-ignition. One method to suppress both knock and pre-ignition is water injection. This study explores the possibility of suppressing knock in-cycle using direct water injection for cycles with an elevated risk of knocking. The prediction was based on the observation that, at knock-limited operation, only cycles with the most advanced combustion phasing knock. Furthermore, at knock-limited loads, combustion predominantly consisted of a single combustion mode: deflagration. The results demonstrated partial knock suppression and allowed for a combustion phasing advancement of 1.5°at loads of 10 and 15 bar gross indicated mean effective pressure. The earliest practical point during the combustion cycle to confidently determine if knock will occur was when about 10%–20% of the fuel had been consumed. However, theoretically, in a best-case scenario, this could be as early as when 5% of the fuel was consumed. An experiment simulating pre-ignition also demonstrated the ability to detect such cycles and partially suppress the ensuing knock. A major limitation of the method is that the window between detecting a cycle with a high likelihood of knock and knock onset was less than 7°at 1000 rpm.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119174"},"PeriodicalIF":9.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stoichiometric methanol autoignition and in-cycle knock suppression using direct water injection\",\"authors\":\"Andreas Lius, Magnus Sjöberg, Andreas Cronhjort, Ulf Olofsson\",\"doi\":\"10.1016/j.enconman.2024.119174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Methanol as a fuel is gaining popularity due to its favorable properties and potential for sustainable production as bio- or electro-methanol. By operating according to the Spark-Ignited (SI) principle with a Three-Way Catalyst (TWC), low emissions can be achieved. The main phenomena limiting the efficiency of the SI engine when operating with stoichiometric mixtures are knock and, occasionally, pre-ignition. One method to suppress both knock and pre-ignition is water injection. This study explores the possibility of suppressing knock in-cycle using direct water injection for cycles with an elevated risk of knocking. The prediction was based on the observation that, at knock-limited operation, only cycles with the most advanced combustion phasing knock. Furthermore, at knock-limited loads, combustion predominantly consisted of a single combustion mode: deflagration. The results demonstrated partial knock suppression and allowed for a combustion phasing advancement of 1.5°at loads of 10 and 15 bar gross indicated mean effective pressure. The earliest practical point during the combustion cycle to confidently determine if knock will occur was when about 10%–20% of the fuel had been consumed. However, theoretically, in a best-case scenario, this could be as early as when 5% of the fuel was consumed. An experiment simulating pre-ignition also demonstrated the ability to detect such cycles and partially suppress the ensuing knock. A major limitation of the method is that the window between detecting a cycle with a high likelihood of knock and knock onset was less than 7°at 1000 rpm.</div></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":\"322 \",\"pages\":\"Article 119174\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890424011154\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424011154","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Stoichiometric methanol autoignition and in-cycle knock suppression using direct water injection
Methanol as a fuel is gaining popularity due to its favorable properties and potential for sustainable production as bio- or electro-methanol. By operating according to the Spark-Ignited (SI) principle with a Three-Way Catalyst (TWC), low emissions can be achieved. The main phenomena limiting the efficiency of the SI engine when operating with stoichiometric mixtures are knock and, occasionally, pre-ignition. One method to suppress both knock and pre-ignition is water injection. This study explores the possibility of suppressing knock in-cycle using direct water injection for cycles with an elevated risk of knocking. The prediction was based on the observation that, at knock-limited operation, only cycles with the most advanced combustion phasing knock. Furthermore, at knock-limited loads, combustion predominantly consisted of a single combustion mode: deflagration. The results demonstrated partial knock suppression and allowed for a combustion phasing advancement of 1.5°at loads of 10 and 15 bar gross indicated mean effective pressure. The earliest practical point during the combustion cycle to confidently determine if knock will occur was when about 10%–20% of the fuel had been consumed. However, theoretically, in a best-case scenario, this could be as early as when 5% of the fuel was consumed. An experiment simulating pre-ignition also demonstrated the ability to detect such cycles and partially suppress the ensuing knock. A major limitation of the method is that the window between detecting a cycle with a high likelihood of knock and knock onset was less than 7°at 1000 rpm.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.