利用小波-SVM 融合技术进行煤矿智能故障预测

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-10-23 DOI:10.1016/j.cageo.2024.105744
Chengyang Han , Guangui Zou , Hen-Geul Yeh , Fei Gong , Suzhen Shi , Hao Chen
{"title":"利用小波-SVM 融合技术进行煤矿智能故障预测","authors":"Chengyang Han ,&nbsp;Guangui Zou ,&nbsp;Hen-Geul Yeh ,&nbsp;Fei Gong ,&nbsp;Suzhen Shi ,&nbsp;Hao Chen","doi":"10.1016/j.cageo.2024.105744","DOIUrl":null,"url":null,"abstract":"<div><div>Fault prediction in coal mining is crucial for safety, and recent technological advancements are steering this field towards supervised intelligent interpretation, moving beyond traditional human-machine interaction. Currently, support vector machine (SVM) predictions often rely on seismic attribute data; however, the poor quality of some fault data characteristics hampers their predictive capability. To localize the fault based on original seismic data and improve SVM prediction we propose the W-SVM algorithm, which integrates wavelet transform and SVM. Through wavelet transform, we localize fault features in seismic data, which are then used for SVM prediction. Validation using real data confirms the feasibility of the W-SVM approach. The W-SVM model successfully identifies 34 known faults. Beyond achieving high prediction accuracy, the model exhibits improved stability and generalization. The difference among the evaluation metrics for training, validation, and testing is within 5%. Moreover, this study localizes the response of faults through wavelet transform, simplifies the dataset preparation process, improves computational efficiency, and increases overall applicability. This advancement further promotes the development of intelligent identification of faults in coal mines.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent fault prediction with wavelet-SVM fusion in coal mine\",\"authors\":\"Chengyang Han ,&nbsp;Guangui Zou ,&nbsp;Hen-Geul Yeh ,&nbsp;Fei Gong ,&nbsp;Suzhen Shi ,&nbsp;Hao Chen\",\"doi\":\"10.1016/j.cageo.2024.105744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fault prediction in coal mining is crucial for safety, and recent technological advancements are steering this field towards supervised intelligent interpretation, moving beyond traditional human-machine interaction. Currently, support vector machine (SVM) predictions often rely on seismic attribute data; however, the poor quality of some fault data characteristics hampers their predictive capability. To localize the fault based on original seismic data and improve SVM prediction we propose the W-SVM algorithm, which integrates wavelet transform and SVM. Through wavelet transform, we localize fault features in seismic data, which are then used for SVM prediction. Validation using real data confirms the feasibility of the W-SVM approach. The W-SVM model successfully identifies 34 known faults. Beyond achieving high prediction accuracy, the model exhibits improved stability and generalization. The difference among the evaluation metrics for training, validation, and testing is within 5%. Moreover, this study localizes the response of faults through wavelet transform, simplifies the dataset preparation process, improves computational efficiency, and increases overall applicability. This advancement further promotes the development of intelligent identification of faults in coal mines.</div></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424002279\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002279","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

煤矿开采中的断层预测对安全至关重要,而最近的技术进步正在引导该领域向监督智能解释方向发展,超越了传统的人机交互。目前,支持向量机(SVM)预测通常依赖于地震属性数据,但一些断层数据特征的质量较差,影响了其预测能力。为了在原始地震数据的基础上定位断层并改进 SVM 预测,我们提出了小波变换与 SVM 相结合的 W-SVM 算法。通过小波变换,我们定位了地震数据中的断层特征,然后将其用于 SVM 预测。使用真实数据进行的验证证实了 W-SVM 方法的可行性。W-SVM 模型成功识别了 34 个已知断层。除了达到较高的预测精度,该模型还表现出更高的稳定性和泛化能力。训练、验证和测试的评估指标之间的差异均在 5%以内。此外,该研究通过小波变换对故障响应进行定位,简化了数据集准备过程,提高了计算效率,并增加了整体适用性。这一进步进一步推动了煤矿断层智能识别的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent fault prediction with wavelet-SVM fusion in coal mine
Fault prediction in coal mining is crucial for safety, and recent technological advancements are steering this field towards supervised intelligent interpretation, moving beyond traditional human-machine interaction. Currently, support vector machine (SVM) predictions often rely on seismic attribute data; however, the poor quality of some fault data characteristics hampers their predictive capability. To localize the fault based on original seismic data and improve SVM prediction we propose the W-SVM algorithm, which integrates wavelet transform and SVM. Through wavelet transform, we localize fault features in seismic data, which are then used for SVM prediction. Validation using real data confirms the feasibility of the W-SVM approach. The W-SVM model successfully identifies 34 known faults. Beyond achieving high prediction accuracy, the model exhibits improved stability and generalization. The difference among the evaluation metrics for training, validation, and testing is within 5%. Moreover, this study localizes the response of faults through wavelet transform, simplifies the dataset preparation process, improves computational efficiency, and increases overall applicability. This advancement further promotes the development of intelligent identification of faults in coal mines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
A reverse tracing of the water flow path algorithm for slope length extraction based on triangulated irregular network Rock-type classification: A (critical) machine-learning perspective Improving the training performance of generative adversarial networks with limited data: Application to the generation of geological models A hybrid inversion algorithm to obtain the resistivity of the uninvaded zone based on the array induction log Application of polynomial type elastic outer boundary conditions in fractal composite reservoir seepage model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1