Application of polynomial type elastic outer boundary conditions in fractal composite reservoir seepage model

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-10-31 DOI:10.1016/j.cageo.2024.105764
{"title":"Application of polynomial type elastic outer boundary conditions in fractal composite reservoir seepage model","authors":"","doi":"10.1016/j.cageo.2024.105764","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the elastic function in the explanation of elastic outer boundary condition is regarded as polynomial functions of space variable <span><math><mrow><mi>r</mi></mrow></math></span> and time variable <span><math><mrow><mi>t</mi></mrow></math></span>, and this is incorporated into the analysis of fractal composite reservoirs. The Laplace space solution the fractal composite reservoir models, which have polynomial elastic outer boundary conditions, is achieved through a modified method of similarity construction and the Gaver-Stehfest numerical inversion technique is used to derive the semi-analytical solutions for the models in actual space. Next, the polynomial elastic function is turned into a first-order function about time variable. Curves of pressure in non-dimensional well bottom under different quadratic pressure gradient terms and primary control factors are drawn by using MATLAB software and their impact on non-dimensional well bottom are analyzed. It is proved that the three impractical outer boundary conditions are only a particular case of the polynomial elastic outer boundary conditions. The research in this paper expands the discussion scope of elastic outer boundary conditions, and has strong reference significance.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002474","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the elastic function in the explanation of elastic outer boundary condition is regarded as polynomial functions of space variable r and time variable t, and this is incorporated into the analysis of fractal composite reservoirs. The Laplace space solution the fractal composite reservoir models, which have polynomial elastic outer boundary conditions, is achieved through a modified method of similarity construction and the Gaver-Stehfest numerical inversion technique is used to derive the semi-analytical solutions for the models in actual space. Next, the polynomial elastic function is turned into a first-order function about time variable. Curves of pressure in non-dimensional well bottom under different quadratic pressure gradient terms and primary control factors are drawn by using MATLAB software and their impact on non-dimensional well bottom are analyzed. It is proved that the three impractical outer boundary conditions are only a particular case of the polynomial elastic outer boundary conditions. The research in this paper expands the discussion scope of elastic outer boundary conditions, and has strong reference significance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多项式型弹性外边界条件在分形复合储层渗流模型中的应用
本文将弹性外边界条件解释中的弹性函数视为空间变量 r 和时间变量 t 的多项式函数,并将其纳入分形复合储层的分析中。通过改进的相似性构造方法实现了具有多项式弹性外边界条件的分形复合储层模型的拉普拉斯空间解,并利用 Gaver-Stehfest 数值反演技术得出了模型在实际空间的半解析解。然后,将多项式弹性函数转化为关于时间变量的一阶函数。利用 MATLAB 软件绘制了不同二次压力梯度项和主控因素下的非三维井底压力曲线,并分析了它们对非三维井底的影响。结果证明,三种不切实际的外边界条件只是多项式弹性外边界条件的一种特殊情况。本文的研究拓展了弹性外边界条件的讨论范围,具有很强的借鉴意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
A reverse tracing of the water flow path algorithm for slope length extraction based on triangulated irregular network Rock-type classification: A (critical) machine-learning perspective Improving the training performance of generative adversarial networks with limited data: Application to the generation of geological models A hybrid inversion algorithm to obtain the resistivity of the uninvaded zone based on the array induction log Application of polynomial type elastic outer boundary conditions in fractal composite reservoir seepage model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1