Ayesha Javaid , Muhammad Imran , Manoj P Rayaroth , Xun Sun , Chongqing Wang , Grzegorz Boczkaj , Malwina Momotko
{"title":"用于光催化去除药物和个人护理产品的氮化石墨碳/铋基 Z 型异质结--综述","authors":"Ayesha Javaid , Muhammad Imran , Manoj P Rayaroth , Xun Sun , Chongqing Wang , Grzegorz Boczkaj , Malwina Momotko","doi":"10.1016/j.coche.2024.101054","DOIUrl":null,"url":null,"abstract":"<div><div>Z-scheme heterojunction in recent years is one of the most promising approaches in photocatalytic materials in solar light region for various environmental applications, including the removal of pharmaceuticals and personal care products (PPCPs). Integrating g-C<sub>3</sub>N<sub>4</sub> and Bi-based semiconductors via Z-scheme is highly effective in providing efficient flow of charge carriers along with suitable redox sites. The g-C<sub>3</sub>N<sub>4</sub>/Bi-based photocatalysts were synthesized by hydrothermal, co-precipitation, co-calcination, solvothermal polycondensation, or ion exchange/photoreduction. Environmental pollutants, such as tetracycline, ofloxacin, ciprofloxacin, levofloxacin, cefixime, and carbamazepine, were degraded with efficiency exceeding 90%. The major reactive species identified in those Z-schemes were superoxide radicals, hydroxyl radicals, and electron-holes pair. Best processes revealed economically feasible with 700–800 kWh/m<sup>3</sup> of electric energy per order (EEO). For solar light–driven processes, energy can be named as ‘free’ (sunlight), but EEO allows to compare new developments. In future studies, process economic aspect, effectiveness in case of real effluents, including high-salinity conditions and evaluation of photocatalysts stability, and metals leaching should be addressed.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101054"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphitic carbon nitride/bismuth-based Z-scheme heterojunctions for the photocatalytic removal of pharmaceuticals and personal care products — a review\",\"authors\":\"Ayesha Javaid , Muhammad Imran , Manoj P Rayaroth , Xun Sun , Chongqing Wang , Grzegorz Boczkaj , Malwina Momotko\",\"doi\":\"10.1016/j.coche.2024.101054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Z-scheme heterojunction in recent years is one of the most promising approaches in photocatalytic materials in solar light region for various environmental applications, including the removal of pharmaceuticals and personal care products (PPCPs). Integrating g-C<sub>3</sub>N<sub>4</sub> and Bi-based semiconductors via Z-scheme is highly effective in providing efficient flow of charge carriers along with suitable redox sites. The g-C<sub>3</sub>N<sub>4</sub>/Bi-based photocatalysts were synthesized by hydrothermal, co-precipitation, co-calcination, solvothermal polycondensation, or ion exchange/photoreduction. Environmental pollutants, such as tetracycline, ofloxacin, ciprofloxacin, levofloxacin, cefixime, and carbamazepine, were degraded with efficiency exceeding 90%. The major reactive species identified in those Z-schemes were superoxide radicals, hydroxyl radicals, and electron-holes pair. Best processes revealed economically feasible with 700–800 kWh/m<sup>3</sup> of electric energy per order (EEO). For solar light–driven processes, energy can be named as ‘free’ (sunlight), but EEO allows to compare new developments. In future studies, process economic aspect, effectiveness in case of real effluents, including high-salinity conditions and evaluation of photocatalysts stability, and metals leaching should be addressed.</div></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"46 \",\"pages\":\"Article 101054\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339824000558\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339824000558","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
近年来,Z-scheme 异质结是太阳光区光催化材料中最有前途的方法之一,可用于各种环境应用,包括去除药物和个人护理产品(PPCPs)。通过 Z 型方案将 g-C3N4 和铋基半导体整合在一起,可高效提供电荷载流子流和合适的氧化还原位点。g-C3N4/Bi 基光催化剂是通过水热法、共沉淀法、共煅烧法、溶热缩聚法或离子交换/光还原法合成的。四环素、氧氟沙星、环丙沙星、左氧氟沙星、头孢克肟和卡马西平等环境污染物的降解效率超过 90%。在这些 Z 方案中发现的主要反应物是超氧自由基、羟自由基和电子-空穴对。最佳工艺显示,每订单 700-800 千瓦时/立方米的电能(EEO)在经济上是可行的。对于太阳光驱动的工艺,能量可以被称为 "免费"(太阳光),但 EEO 可以用来比较新的开发成果。在今后的研究中,应考虑工艺的经济性、实际废水的有效性,包括高盐度条件和光催化剂稳定性评估以及金属沥滤。
Graphitic carbon nitride/bismuth-based Z-scheme heterojunctions for the photocatalytic removal of pharmaceuticals and personal care products — a review
Z-scheme heterojunction in recent years is one of the most promising approaches in photocatalytic materials in solar light region for various environmental applications, including the removal of pharmaceuticals and personal care products (PPCPs). Integrating g-C3N4 and Bi-based semiconductors via Z-scheme is highly effective in providing efficient flow of charge carriers along with suitable redox sites. The g-C3N4/Bi-based photocatalysts were synthesized by hydrothermal, co-precipitation, co-calcination, solvothermal polycondensation, or ion exchange/photoreduction. Environmental pollutants, such as tetracycline, ofloxacin, ciprofloxacin, levofloxacin, cefixime, and carbamazepine, were degraded with efficiency exceeding 90%. The major reactive species identified in those Z-schemes were superoxide radicals, hydroxyl radicals, and electron-holes pair. Best processes revealed economically feasible with 700–800 kWh/m3 of electric energy per order (EEO). For solar light–driven processes, energy can be named as ‘free’ (sunlight), but EEO allows to compare new developments. In future studies, process economic aspect, effectiveness in case of real effluents, including high-salinity conditions and evaluation of photocatalysts stability, and metals leaching should be addressed.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.