用于诊断小于 1 厘米甲状腺结节的深度学习模型:一项多中心回顾性研究

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Open Pub Date : 2024-10-31 DOI:10.1016/j.ejro.2024.100609
Na Feng , Shanshan Zhao , Kai Wang , Peizhe Chen , Yunpeng Wang , Yuan Gao , Zhengping Wang , Yidan Lu , Chen Chen , Jincao Yao , Zhikai Lei , Dong Xu
{"title":"用于诊断小于 1 厘米甲状腺结节的深度学习模型:一项多中心回顾性研究","authors":"Na Feng ,&nbsp;Shanshan Zhao ,&nbsp;Kai Wang ,&nbsp;Peizhe Chen ,&nbsp;Yunpeng Wang ,&nbsp;Yuan Gao ,&nbsp;Zhengping Wang ,&nbsp;Yidan Lu ,&nbsp;Chen Chen ,&nbsp;Jincao Yao ,&nbsp;Zhikai Lei ,&nbsp;Dong Xu","doi":"10.1016/j.ejro.2024.100609","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop a ultrasound images based dual-channel deep learning model to achieve accurate early diagnosis of thyroid nodules less than 1 cm.</div></div><div><h3>Methods</h3><div>A dual-channel deep learning model called thyroid nodule transformer network (TNT-Net) was proposed. The model has two input channels for transverse and longitudinal ultrasound images of thyroid nodules, respectively. A total of 9649 nodules from 8455 patients across five hospitals were retrospectively collected. The data were divided into a training set (8453 nodules, 7369 patients), an internal test set (565 nodules, 512 patients), and an external test set (631 nodules, 574 patients).</div></div><div><h3>Results</h3><div>TNT-Net achieved an area under the curve (AUC) of 0.953 (95 % confidence interval (CI): 0.934, 0.969) on the internal test set and 0.941 (95 % CI: 0.921, 0.957) on the external test set, significantly outperforming traditional deep convolutional neural network models and single-channel swin transformer model, whose AUCs ranged from 0.800 (95 % CI: 0.759, 0.837) to 0.856 (95 % CI: 0.819, 0.881). Furthermore, feature heatmap visualization showed that TNT-Net could extract richer and more energetic malignant nodule patterns.</div></div><div><h3>Conclusion</h3><div>The proposed TNT-Net model significantly improved the recognition capability for thyroid nodules with size less than 1 cm. This model has the potential to reduce overdiagnosis and overtreatment of such nodules, providing essential support for precise management of thyroid nodules while complementing fine-needle aspiration biopsy.</div></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":"13 ","pages":"Article 100609"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study\",\"authors\":\"Na Feng ,&nbsp;Shanshan Zhao ,&nbsp;Kai Wang ,&nbsp;Peizhe Chen ,&nbsp;Yunpeng Wang ,&nbsp;Yuan Gao ,&nbsp;Zhengping Wang ,&nbsp;Yidan Lu ,&nbsp;Chen Chen ,&nbsp;Jincao Yao ,&nbsp;Zhikai Lei ,&nbsp;Dong Xu\",\"doi\":\"10.1016/j.ejro.2024.100609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To develop a ultrasound images based dual-channel deep learning model to achieve accurate early diagnosis of thyroid nodules less than 1 cm.</div></div><div><h3>Methods</h3><div>A dual-channel deep learning model called thyroid nodule transformer network (TNT-Net) was proposed. The model has two input channels for transverse and longitudinal ultrasound images of thyroid nodules, respectively. A total of 9649 nodules from 8455 patients across five hospitals were retrospectively collected. The data were divided into a training set (8453 nodules, 7369 patients), an internal test set (565 nodules, 512 patients), and an external test set (631 nodules, 574 patients).</div></div><div><h3>Results</h3><div>TNT-Net achieved an area under the curve (AUC) of 0.953 (95 % confidence interval (CI): 0.934, 0.969) on the internal test set and 0.941 (95 % CI: 0.921, 0.957) on the external test set, significantly outperforming traditional deep convolutional neural network models and single-channel swin transformer model, whose AUCs ranged from 0.800 (95 % CI: 0.759, 0.837) to 0.856 (95 % CI: 0.819, 0.881). Furthermore, feature heatmap visualization showed that TNT-Net could extract richer and more energetic malignant nodule patterns.</div></div><div><h3>Conclusion</h3><div>The proposed TNT-Net model significantly improved the recognition capability for thyroid nodules with size less than 1 cm. This model has the potential to reduce overdiagnosis and overtreatment of such nodules, providing essential support for precise management of thyroid nodules while complementing fine-needle aspiration biopsy.</div></div>\",\"PeriodicalId\":38076,\"journal\":{\"name\":\"European Journal of Radiology Open\",\"volume\":\"13 \",\"pages\":\"Article 100609\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352047724000649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047724000649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

方法提出了一种名为甲状腺结节变压器网络(TNT-Net)的双通道深度学习模型。该模型有两个输入通道,分别用于甲状腺结节的横向和纵向超声图像。研究人员回顾性收集了五家医院 8455 名患者的 9649 个甲状腺结节。数据分为训练集(8453 个结节,7369 名患者)、内部测试集(565 个结节,512 名患者)和外部测试集(631 个结节,574 名患者)。结果TNT-Net在内部测试集上的曲线下面积(AUC)为0.953(95 % 置信区间(CI):0.934,0.969),在外部测试集上的曲线下面积(AUC)为0.941(95 % 置信区间(CI):0.921,0.957),明显优于传统的深度卷积神经网络模型和单通道swin transformer模型,后者的AUC在0.800(95 % 置信区间(CI):0.759,0.837)到0.856(95 % 置信区间(CI):0.819,0.881)之间。此外,特征热图可视化显示 TNT-Net 能提取出更丰富、更有活力的恶性结节模式。该模型有望减少此类结节的过度诊断和过度治疗,为甲状腺结节的精确管理提供重要支持,同时也是对细针穿刺活检的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study

Objective

To develop a ultrasound images based dual-channel deep learning model to achieve accurate early diagnosis of thyroid nodules less than 1 cm.

Methods

A dual-channel deep learning model called thyroid nodule transformer network (TNT-Net) was proposed. The model has two input channels for transverse and longitudinal ultrasound images of thyroid nodules, respectively. A total of 9649 nodules from 8455 patients across five hospitals were retrospectively collected. The data were divided into a training set (8453 nodules, 7369 patients), an internal test set (565 nodules, 512 patients), and an external test set (631 nodules, 574 patients).

Results

TNT-Net achieved an area under the curve (AUC) of 0.953 (95 % confidence interval (CI): 0.934, 0.969) on the internal test set and 0.941 (95 % CI: 0.921, 0.957) on the external test set, significantly outperforming traditional deep convolutional neural network models and single-channel swin transformer model, whose AUCs ranged from 0.800 (95 % CI: 0.759, 0.837) to 0.856 (95 % CI: 0.819, 0.881). Furthermore, feature heatmap visualization showed that TNT-Net could extract richer and more energetic malignant nodule patterns.

Conclusion

The proposed TNT-Net model significantly improved the recognition capability for thyroid nodules with size less than 1 cm. This model has the potential to reduce overdiagnosis and overtreatment of such nodules, providing essential support for precise management of thyroid nodules while complementing fine-needle aspiration biopsy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
期刊最新文献
Comparison of objective quality parameters between CTA and CTP angiographic reconstructions in ischemic stroke patients. Assessment of hemodynamic disturbances and impaired ventricular filling in asymptomatic fontan patients: A 4D flow CMR study. Peroneus brevis split tear - A challenging diagnosis: A pictorial review of magnetic resonance and ultrasound imaging. Part 1. Anatomical basis and clinical insights. CT-based intratumoral and peritumoral radiomics nomogram to predict spread through air spaces in lung adenocarcinoma with diameter ≤ 3 cm: A multicenter study. Potential of spectral imaging generated by contrast-enhanced dual-energy CT for lung cancer histopathological classification - A preliminary study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1