弱矩条件下的最小二乘回归

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-28 DOI:10.1016/j.cam.2024.116336
Hongzhi Tong
{"title":"弱矩条件下的最小二乘回归","authors":"Hongzhi Tong","doi":"10.1016/j.cam.2024.116336","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider the robust regression problem when the output variable may be heavy-tailed. In such scenarios, the traditional least squares regression paradigm is usually thought to be not a good choice as it lacks robustness to outliers. By projecting the outputs onto an adaptive interval, we show the regularized least squares regression can still work well when the conditional distribution satisfies a weak moment condition. Fast convergence rates in various norm are derived by tuning the projection scale parameter and regularization parameter in according with the sample size and the moment condition.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Least squares regression under weak moment conditions\",\"authors\":\"Hongzhi Tong\",\"doi\":\"10.1016/j.cam.2024.116336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we consider the robust regression problem when the output variable may be heavy-tailed. In such scenarios, the traditional least squares regression paradigm is usually thought to be not a good choice as it lacks robustness to outliers. By projecting the outputs onto an adaptive interval, we show the regularized least squares regression can still work well when the conditional distribution satisfies a weak moment condition. Fast convergence rates in various norm are derived by tuning the projection scale parameter and regularization parameter in according with the sample size and the moment condition.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑的是输出变量可能是重尾变量时的稳健回归问题。在这种情况下,传统的最小二乘回归范式通常被认为不是一个好的选择,因为它缺乏对异常值的鲁棒性。通过将输出投影到一个自适应区间,我们证明了当条件分布满足弱矩形条件时,正则化最小二乘回归仍能很好地发挥作用。通过根据样本大小和矩条件调整投影比例参数和正则化参数,我们得出了各种常模下的快速收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Least squares regression under weak moment conditions
In this paper we consider the robust regression problem when the output variable may be heavy-tailed. In such scenarios, the traditional least squares regression paradigm is usually thought to be not a good choice as it lacks robustness to outliers. By projecting the outputs onto an adaptive interval, we show the regularized least squares regression can still work well when the conditional distribution satisfies a weak moment condition. Fast convergence rates in various norm are derived by tuning the projection scale parameter and regularization parameter in according with the sample size and the moment condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1