Ni-N4、相邻单金属原子和 Fe6 纳米粒子提供的多金属位点对促进二氧化碳活化和还原的协同效应

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-10-28 DOI:10.1016/j.jcis.2024.10.166
{"title":"Ni-N4、相邻单金属原子和 Fe6 纳米粒子提供的多金属位点对促进二氧化碳活化和还原的协同效应","authors":"","doi":"10.1016/j.jcis.2024.10.166","DOIUrl":null,"url":null,"abstract":"<div><div>Single transition metal (TM) atom embedded in nitrogen-doped carbon materials with M−N<sub>x</sub>−C configuration have emerged as a promising class of electrocatalysts for electrochemical CO<sub>2</sub> reduction (CO<sub>2</sub>RR). However, at high TM atom densities, a comprehensive understanding of the active site structure and reaction mechanisms remains a significant challenge, yet it is crucial for enhancing CO<sub>2</sub>RR performance. In this work, we use first-principles calculations to investigate the electrocatalytic performance of Ni-N<sub>4</sub> sites for CO2 reduction to CO, co-assisted by neighboring TM atoms and a Fe<sub>6</sub> nanoparticle. Unlike many previously studied Ni-N<sub>4</sub> catalysts that maintain a linear CO<sub>2</sub> structure, the combination of adjacent TM atoms and Fe<sub>6</sub> induces bending and activation of CO<sub>2</sub> at the Ni site, enhancing its protonation to form key *COOH intermediate while maintaining efficient *CO desorption. The newly designed hybrid electrocatalyst demonstrates a synergistic effect of multi-metal sites in boosting CO<sub>2</sub> reduction to CO. Specifically, the TM atom facilitates C–Ni bond formation between the Ni site and *CO<sub>2</sub>/*COOH species, while Fe<sub>6</sub> forms an Fe…O coordination bond. Detailed analysis of reaction mechanisms and energetics show that Ni-N<sub>4</sub>, co-assisted by a single TM atom and Fe<sub>6</sub> (especially TM = Ni, Cu, or Ag), exhibits enhanced catalytic activity for CO production with a low limiting potential of −0.5 V. This work presents an effective strategy for improving the catalytic activity of single-atom catalysts (SACs) at high metal content.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effect of multi-metal site provided by Ni-N4, adjacent single metal atom, and Fe6 nanoparticle to boost CO2 activation and reduction\",\"authors\":\"\",\"doi\":\"10.1016/j.jcis.2024.10.166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Single transition metal (TM) atom embedded in nitrogen-doped carbon materials with M−N<sub>x</sub>−C configuration have emerged as a promising class of electrocatalysts for electrochemical CO<sub>2</sub> reduction (CO<sub>2</sub>RR). However, at high TM atom densities, a comprehensive understanding of the active site structure and reaction mechanisms remains a significant challenge, yet it is crucial for enhancing CO<sub>2</sub>RR performance. In this work, we use first-principles calculations to investigate the electrocatalytic performance of Ni-N<sub>4</sub> sites for CO2 reduction to CO, co-assisted by neighboring TM atoms and a Fe<sub>6</sub> nanoparticle. Unlike many previously studied Ni-N<sub>4</sub> catalysts that maintain a linear CO<sub>2</sub> structure, the combination of adjacent TM atoms and Fe<sub>6</sub> induces bending and activation of CO<sub>2</sub> at the Ni site, enhancing its protonation to form key *COOH intermediate while maintaining efficient *CO desorption. The newly designed hybrid electrocatalyst demonstrates a synergistic effect of multi-metal sites in boosting CO<sub>2</sub> reduction to CO. Specifically, the TM atom facilitates C–Ni bond formation between the Ni site and *CO<sub>2</sub>/*COOH species, while Fe<sub>6</sub> forms an Fe…O coordination bond. Detailed analysis of reaction mechanisms and energetics show that Ni-N<sub>4</sub>, co-assisted by a single TM atom and Fe<sub>6</sub> (especially TM = Ni, Cu, or Ag), exhibits enhanced catalytic activity for CO production with a low limiting potential of −0.5 V. This work presents an effective strategy for improving the catalytic activity of single-atom catalysts (SACs) at high metal content.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724025219\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025219","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

嵌入具有 M-Nx-C 构型的掺氮碳材料中的单过渡金属 (TM) 原子已成为一类很有前途的电化学二氧化碳还原 (CO2RR) 电催化剂。然而,在 TM 原子密度较高的情况下,全面了解活性位点结构和反应机理仍是一项重大挑战,但这对提高 CO2RR 性能至关重要。在这项工作中,我们利用第一性原理计算研究了 Ni-N4 位点在邻近 TM 原子和 Fe6 纳米粒子的共同协助下将 CO2 还原成 CO 的电催化性能。与之前研究的许多保持线性 CO2 结构的 Ni-N4 催化剂不同,相邻 TM 原子和 Fe6 的结合可诱导 Ni 位点上的 CO2 发生弯曲和活化,增强其质子化以形成关键的 *COOH 中间体,同时保持高效的 *CO 解吸。新设计的混合电催化剂展示了多金属位点在促进 CO2 还原成 CO 方面的协同效应。具体来说,TM 原子促进了 Ni 位点与 *CO2/*COOH 物种之间 C-Ni 键的形成,而 Fe6 则形成了 Fe...O 配位键。对反应机理和能量学的详细分析表明,Ni-N4 在单个 TM 原子和 Fe6(尤其是 TM = Ni、Cu 或 Ag)的共同辅助下,在 -0.5 V 的低极限电位下,对 CO 的生成表现出更强的催化活性。这项研究提出了一种在高金属含量条件下提高单原子催化剂催化活性的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic effect of multi-metal site provided by Ni-N4, adjacent single metal atom, and Fe6 nanoparticle to boost CO2 activation and reduction
Single transition metal (TM) atom embedded in nitrogen-doped carbon materials with M−Nx−C configuration have emerged as a promising class of electrocatalysts for electrochemical CO2 reduction (CO2RR). However, at high TM atom densities, a comprehensive understanding of the active site structure and reaction mechanisms remains a significant challenge, yet it is crucial for enhancing CO2RR performance. In this work, we use first-principles calculations to investigate the electrocatalytic performance of Ni-N4 sites for CO2 reduction to CO, co-assisted by neighboring TM atoms and a Fe6 nanoparticle. Unlike many previously studied Ni-N4 catalysts that maintain a linear CO2 structure, the combination of adjacent TM atoms and Fe6 induces bending and activation of CO2 at the Ni site, enhancing its protonation to form key *COOH intermediate while maintaining efficient *CO desorption. The newly designed hybrid electrocatalyst demonstrates a synergistic effect of multi-metal sites in boosting CO2 reduction to CO. Specifically, the TM atom facilitates C–Ni bond formation between the Ni site and *CO2/*COOH species, while Fe6 forms an Fe…O coordination bond. Detailed analysis of reaction mechanisms and energetics show that Ni-N4, co-assisted by a single TM atom and Fe6 (especially TM = Ni, Cu, or Ag), exhibits enhanced catalytic activity for CO production with a low limiting potential of −0.5 V. This work presents an effective strategy for improving the catalytic activity of single-atom catalysts (SACs) at high metal content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1