SFIA:开发用于假图像归属的通用语义诊断方法

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Intelligent Systems Pub Date : 2024-11-01 DOI:10.1155/2024/7950247
Jianpeng Ke, Lina Wang, Jiatong Liu, Jie Fu
{"title":"SFIA:开发用于假图像归属的通用语义诊断方法","authors":"Jianpeng Ke,&nbsp;Lina Wang,&nbsp;Jiatong Liu,&nbsp;Jie Fu","doi":"10.1155/2024/7950247","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The proliferation of photorealistic images synthesized by generative adversarial networks (GANs) has posed serious threats to society. Therefore a new challenge task, named image attribution, is arising to attribute fake images to a specific GAN. However, existing approaches focus on model-specific features but neglect the misguidance of semantic-relevant features in image attribution, which leads to a significant performance decrease in cross-dataset evaluation. To tackle the above problem, we propose a semantic-agnostic fake image attribution (SFIA) method, which effectively distinguishes fake images by disentangling the GANs fingerprint and semantic-relevant features in latent space. Specifically, we design a semantic eliminator based on residual block with skip connections that take images as input and outputs GAN fingerprint features. A classifier with an attention module for feature refinement is introduced to make the final decision. In addition, we develop a well-trained reconstructor and classifier which supervise the semantic eliminator to achieve semantic-agnostic feature extraction. Moreover, we propose an improved data augmentation combined with meta-learning to enhance the model’s generalization in detecting unseen image categories. Comprehensive experiments on various datasets, namely, CelebA, LSUN-church, and LSUN-bedroom, demonstrate the effectiveness of our proposed SFIA. It achieves over 95% accuracy on three datasets and exhibits superior performance in terms of generalization to unseen data.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7950247","citationCount":"0","resultStr":"{\"title\":\"SFIA: Toward a Generalized Semantic-Agnostic Method for Fake Image Attribution\",\"authors\":\"Jianpeng Ke,&nbsp;Lina Wang,&nbsp;Jiatong Liu,&nbsp;Jie Fu\",\"doi\":\"10.1155/2024/7950247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The proliferation of photorealistic images synthesized by generative adversarial networks (GANs) has posed serious threats to society. Therefore a new challenge task, named image attribution, is arising to attribute fake images to a specific GAN. However, existing approaches focus on model-specific features but neglect the misguidance of semantic-relevant features in image attribution, which leads to a significant performance decrease in cross-dataset evaluation. To tackle the above problem, we propose a semantic-agnostic fake image attribution (SFIA) method, which effectively distinguishes fake images by disentangling the GANs fingerprint and semantic-relevant features in latent space. Specifically, we design a semantic eliminator based on residual block with skip connections that take images as input and outputs GAN fingerprint features. A classifier with an attention module for feature refinement is introduced to make the final decision. In addition, we develop a well-trained reconstructor and classifier which supervise the semantic eliminator to achieve semantic-agnostic feature extraction. Moreover, we propose an improved data augmentation combined with meta-learning to enhance the model’s generalization in detecting unseen image categories. Comprehensive experiments on various datasets, namely, CelebA, LSUN-church, and LSUN-bedroom, demonstrate the effectiveness of our proposed SFIA. It achieves over 95% accuracy on three datasets and exhibits superior performance in terms of generalization to unseen data.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7950247\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7950247\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7950247","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

生成式对抗网络(GAN)合成的逼真图像激增,对社会造成了严重威胁。因此,一项名为 "图像归属 "的新挑战任务应运而生,即把虚假图像归属于特定的生成式对抗网络。然而,现有方法只关注特定模型的特征,却忽视了图像归因中语义相关特征的误导,导致跨数据集评估的性能大幅下降。针对上述问题,我们提出了一种语义无关的伪造图像归因(SFIA)方法,该方法通过在潜空间中分离 GANs 指纹和语义相关特征来有效区分伪造图像。具体来说,我们设计了一种基于带跳过连接的残差块的语义消除器,它以图像为输入,输出 GAN 指纹特征。我们还引入了一个带有注意模块的分类器来完善特征,从而做出最终决定。此外,我们还开发了一种训练有素的重构器和分类器,对语义消除器进行监督,以实现语义无关的特征提取。此外,我们还提出了一种与元学习相结合的改进型数据增强方法,以增强模型在检测未见图像类别时的泛化能力。在各种数据集(即 CelebA、LSUN-教堂和 LSUN-卧室)上进行的综合实验证明了我们提出的 SFIA 的有效性。它在三个数据集上达到了 95% 以上的准确率,并在对未见数据的泛化方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SFIA: Toward a Generalized Semantic-Agnostic Method for Fake Image Attribution

The proliferation of photorealistic images synthesized by generative adversarial networks (GANs) has posed serious threats to society. Therefore a new challenge task, named image attribution, is arising to attribute fake images to a specific GAN. However, existing approaches focus on model-specific features but neglect the misguidance of semantic-relevant features in image attribution, which leads to a significant performance decrease in cross-dataset evaluation. To tackle the above problem, we propose a semantic-agnostic fake image attribution (SFIA) method, which effectively distinguishes fake images by disentangling the GANs fingerprint and semantic-relevant features in latent space. Specifically, we design a semantic eliminator based on residual block with skip connections that take images as input and outputs GAN fingerprint features. A classifier with an attention module for feature refinement is introduced to make the final decision. In addition, we develop a well-trained reconstructor and classifier which supervise the semantic eliminator to achieve semantic-agnostic feature extraction. Moreover, we propose an improved data augmentation combined with meta-learning to enhance the model’s generalization in detecting unseen image categories. Comprehensive experiments on various datasets, namely, CelebA, LSUN-church, and LSUN-bedroom, demonstrate the effectiveness of our proposed SFIA. It achieves over 95% accuracy on three datasets and exhibits superior performance in terms of generalization to unseen data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
期刊最新文献
Construction of the Information Dissemination Model and Calculation of User Influence Based on Attenuation Coefficient Efficient Based on Improved Random Forest Defense System Against Application-Layer DDoS Attacks SFIA: Toward a Generalized Semantic-Agnostic Method for Fake Image Attribution A Deep Convolutional Autoencoder–Enabled Channel Estimation Method in Intelligent Wireless Communication Systems FlowCorrGCN: Enhancing Flow Correlation Through Graph Convolutional Networks and Triplet Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1