Y. A. Yang, W.-T. Luo, J.-L. Zhang, S.-Z. Wang, Chang-Ling Zou, T. Xia, Z.-T. Lu
{"title":"自旋 5/2 原子的微尺度薛定谔猫态","authors":"Y. A. Yang, W.-T. Luo, J.-L. Zhang, S.-Z. Wang, Chang-Ling Zou, T. Xia, Z.-T. Lu","doi":"10.1038/s41566-024-01555-3","DOIUrl":null,"url":null,"abstract":"Quantum metrology with non-classical states offers a promising route to improved precision in physical measurements. The quantum effects of Schrödinger-cat superpositions or entanglements enable measurement uncertainties to reach below the standard quantum limit. However, the challenge of maintaining a long coherence time for such non-classical states often prevents full exploitation of the quantum advantage in metrology. Here we demonstrate a long-lived Schrödinger-cat state of optically trapped 173Yb (I = 5/2) atoms. The cat state, a superposition of two oppositely directed and furthest-apart spin states, is generated by a nonlinear spin rotation. Protected in a decoherence-free subspace against inhomogeneous light shifts of an optical lattice, the cat state persists for a coherence time of 1.4(1) × 103 s. A magnetic field is measured using Ramsey interferometry, demonstrating a scheme of Heisenberg-limited metrology for atomic magnetometry, quantum information processing and searching for new physics beyond the Standard Model. Using spin-5/2 nuclei of 173Yb atoms trapped in an optical lattice, a Schrödinger-cat state persists for a coherence time of 1.4 × 103 s. In measuring external magnetic fields, the cat state exhibits a sensitivity approaching the Heisenberg limit.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 1","pages":"89-94"},"PeriodicalIF":32.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minute-scale Schrödinger-cat state of spin-5/2 atoms\",\"authors\":\"Y. A. Yang, W.-T. Luo, J.-L. Zhang, S.-Z. Wang, Chang-Ling Zou, T. Xia, Z.-T. Lu\",\"doi\":\"10.1038/s41566-024-01555-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum metrology with non-classical states offers a promising route to improved precision in physical measurements. The quantum effects of Schrödinger-cat superpositions or entanglements enable measurement uncertainties to reach below the standard quantum limit. However, the challenge of maintaining a long coherence time for such non-classical states often prevents full exploitation of the quantum advantage in metrology. Here we demonstrate a long-lived Schrödinger-cat state of optically trapped 173Yb (I = 5/2) atoms. The cat state, a superposition of two oppositely directed and furthest-apart spin states, is generated by a nonlinear spin rotation. Protected in a decoherence-free subspace against inhomogeneous light shifts of an optical lattice, the cat state persists for a coherence time of 1.4(1) × 103 s. A magnetic field is measured using Ramsey interferometry, demonstrating a scheme of Heisenberg-limited metrology for atomic magnetometry, quantum information processing and searching for new physics beyond the Standard Model. Using spin-5/2 nuclei of 173Yb atoms trapped in an optical lattice, a Schrödinger-cat state persists for a coherence time of 1.4 × 103 s. In measuring external magnetic fields, the cat state exhibits a sensitivity approaching the Heisenberg limit.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"19 1\",\"pages\":\"89-94\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-024-01555-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01555-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
使用非经典状态的量子计量学为提高物理测量精度提供了一条前景广阔的途径。薛定谔猫叠加或纠缠的量子效应使测量的不确定性达到标准量子极限以下。然而,要使这种非经典状态保持较长的相干时间,往往会阻碍在计量学中充分发挥量子优势。在这里,我们展示了光学捕获的 173Yb (I = 5/2) 原子的长寿命薛定谔猫态。猫态是两个方向相反、相距最远的自旋态的叠加,由非线性自旋旋转产生。猫态在无退相干子空间中受到光晶格不均匀光偏移的保护,其相干时间为 1.4(1) × 103 秒。利用拉姆齐干涉测量法测量磁场,为原子磁力测量、量子信息处理和寻找标准模型之外的新物理学展示了一种海森堡限制计量方案。
Minute-scale Schrödinger-cat state of spin-5/2 atoms
Quantum metrology with non-classical states offers a promising route to improved precision in physical measurements. The quantum effects of Schrödinger-cat superpositions or entanglements enable measurement uncertainties to reach below the standard quantum limit. However, the challenge of maintaining a long coherence time for such non-classical states often prevents full exploitation of the quantum advantage in metrology. Here we demonstrate a long-lived Schrödinger-cat state of optically trapped 173Yb (I = 5/2) atoms. The cat state, a superposition of two oppositely directed and furthest-apart spin states, is generated by a nonlinear spin rotation. Protected in a decoherence-free subspace against inhomogeneous light shifts of an optical lattice, the cat state persists for a coherence time of 1.4(1) × 103 s. A magnetic field is measured using Ramsey interferometry, demonstrating a scheme of Heisenberg-limited metrology for atomic magnetometry, quantum information processing and searching for new physics beyond the Standard Model. Using spin-5/2 nuclei of 173Yb atoms trapped in an optical lattice, a Schrödinger-cat state persists for a coherence time of 1.4 × 103 s. In measuring external magnetic fields, the cat state exhibits a sensitivity approaching the Heisenberg limit.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.