用于高效单组分 pc-WLED 的新型超宽带可见光石榴石荧光粉

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-11-01 DOI:10.1039/d4qi01824a
Qianyi Chen, Zhenjie Lun, Dongdan Chen, Yongsheng Sun, Puxian Xiong, Siyun Li, Shanhui Xu, Zhongmin Yang
{"title":"用于高效单组分 pc-WLED 的新型超宽带可见光石榴石荧光粉","authors":"Qianyi Chen, Zhenjie Lun, Dongdan Chen, Yongsheng Sun, Puxian Xiong, Siyun Li, Shanhui Xu, Zhongmin Yang","doi":"10.1039/d4qi01824a","DOIUrl":null,"url":null,"abstract":"The development of extra-broadband visible emission phosphors is crucial to achieve next-generation illumination with better color experience. Herein, a defect engineering strategy mediated by the structural cationic substitution is proposed and experimentally demonstrated for specific ultra-broadband emission in a garnet phosphor. The induced oxygen vacancies and interstitial cation through lattice distortion break the periodic potential field of the crystal and provide electronic levels in the band gap. As a result, excited by blue-light-emitting diodes, the novel Y<small><sub>3</sub></small>Sc<small><sub>2</sub></small>Al<small><sub>3</sub></small>O<small><sub>12</sub></small>:B<small><sup>3+</sup></small> shows an ultra-broad emission with a full width at half maximum (FWHM) of ∼170 nm. Compared to general defect-emitting phosphors, the unique Y<small><sub>3</sub></small>Sc<small><sub>2</sub></small>Al<small><sub>3</sub></small>O<small><sub>12</sub></small>:B<small><sup>3+</sup></small> exhibits excellent thermal quenching resistance and superior internal quantum efficiency of up to 95%. These findings not only show great promise of Y<small><sub>3</sub></small>Sc<small><sub>2</sub></small>Al<small><sub>3</sub></small>O<small><sub>12</sub></small>:B<small><sup>3+</sup></small> as an extra-broadband emitter but also provide a new design strategy to achieve a full-visible-spectrum phosphor in a single-component material for white-light applications.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel extra-broadband visible-emitting garnet phosphor for efficient single-component pc-WLEDs\",\"authors\":\"Qianyi Chen, Zhenjie Lun, Dongdan Chen, Yongsheng Sun, Puxian Xiong, Siyun Li, Shanhui Xu, Zhongmin Yang\",\"doi\":\"10.1039/d4qi01824a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of extra-broadband visible emission phosphors is crucial to achieve next-generation illumination with better color experience. Herein, a defect engineering strategy mediated by the structural cationic substitution is proposed and experimentally demonstrated for specific ultra-broadband emission in a garnet phosphor. The induced oxygen vacancies and interstitial cation through lattice distortion break the periodic potential field of the crystal and provide electronic levels in the band gap. As a result, excited by blue-light-emitting diodes, the novel Y<small><sub>3</sub></small>Sc<small><sub>2</sub></small>Al<small><sub>3</sub></small>O<small><sub>12</sub></small>:B<small><sup>3+</sup></small> shows an ultra-broad emission with a full width at half maximum (FWHM) of ∼170 nm. Compared to general defect-emitting phosphors, the unique Y<small><sub>3</sub></small>Sc<small><sub>2</sub></small>Al<small><sub>3</sub></small>O<small><sub>12</sub></small>:B<small><sup>3+</sup></small> exhibits excellent thermal quenching resistance and superior internal quantum efficiency of up to 95%. These findings not only show great promise of Y<small><sub>3</sub></small>Sc<small><sub>2</sub></small>Al<small><sub>3</sub></small>O<small><sub>12</sub></small>:B<small><sup>3+</sup></small> as an extra-broadband emitter but also provide a new design strategy to achieve a full-visible-spectrum phosphor in a single-component material for white-light applications.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi01824a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi01824a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发超宽带可见光发射荧光粉对于实现具有更好色彩体验的下一代照明至关重要。本文提出了一种以结构阳离子置换为介导的缺陷工程策略,并通过实验证明了石榴石荧光粉的特定超宽带发射。通过晶格畸变诱导的氧空位和间隙阳离子打破了晶体的周期势场,提供了带隙中的电子水平。因此,在蓝光发光二极管的激发下,新型 Y3Sc2Al3O12:B3+ 显示出超宽的发射,半最大值全宽(FWHM)达到 ∼ 170 nm。与一般的缺陷发光荧光粉相比,独特的 Y3Sc2Al3O12:B3+ 具有优异的抗热淬性能和高达 95% 的内部量子效率。这些发现不仅显示了 Y3Sc2Al3O12:B3+ 作为一种超宽带发光体的巨大前景,而且还提供了一种新的设计策略,即在单组分材料中实现白光应用中的全可见光谱荧光粉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel extra-broadband visible-emitting garnet phosphor for efficient single-component pc-WLEDs
The development of extra-broadband visible emission phosphors is crucial to achieve next-generation illumination with better color experience. Herein, a defect engineering strategy mediated by the structural cationic substitution is proposed and experimentally demonstrated for specific ultra-broadband emission in a garnet phosphor. The induced oxygen vacancies and interstitial cation through lattice distortion break the periodic potential field of the crystal and provide electronic levels in the band gap. As a result, excited by blue-light-emitting diodes, the novel Y3Sc2Al3O12:B3+ shows an ultra-broad emission with a full width at half maximum (FWHM) of ∼170 nm. Compared to general defect-emitting phosphors, the unique Y3Sc2Al3O12:B3+ exhibits excellent thermal quenching resistance and superior internal quantum efficiency of up to 95%. These findings not only show great promise of Y3Sc2Al3O12:B3+ as an extra-broadband emitter but also provide a new design strategy to achieve a full-visible-spectrum phosphor in a single-component material for white-light applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1