Jia Liu, Qianzhu Ji, Ping Li, Shiyu Sun, Wenjun Liang
{"title":"固定填料的膨胀问题:改进方法和不同填料对生物滴滤器影响的比较研究。","authors":"Jia Liu, Qianzhu Ji, Ping Li, Shiyu Sun, Wenjun Liang","doi":"10.1007/s00449-024-03101-5","DOIUrl":null,"url":null,"abstract":"<p><p>Immobilized fillers have been increasingly utilized in biotrickling filters (BTFs) due to their positive impact on shock load resistance and recovery performance. However, due to the inherent characteristics of its immobilized carrier, the immobilized filler is prone to swelling during the long-term operation of the system, resulting in increased pressure drop. Polyurethane (PU) sponge was used as the cross-linked skeleton of immobilized filler and compared with direct emulsified cross-linked immobilized filler for treating ethylbenzene gas. In the early stage, both fillers can maintain good performance despite changes in the inlet concentration and short-term stagnation. However, on the 107th day of operation, the immobilized filler experienced swelling, and the pressure drop sharply increased to 137.2 Pa, while the PU immobilized filler was still able to maintain a low-pressure drop level. The results of the microbial diversity analysis revealed that the microbial community structure of PU immobilized fillers remained relatively stable when responding to the fluctuations in operating conditions. PU sponges as the skeleton can effectively prolong the service life of the immobilized filler and improve the performance of the biotrickling filter.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swelling problems in immobilized filler: an improvement method and comparative study of the effect of different fillers on biotrickling filters.\",\"authors\":\"Jia Liu, Qianzhu Ji, Ping Li, Shiyu Sun, Wenjun Liang\",\"doi\":\"10.1007/s00449-024-03101-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immobilized fillers have been increasingly utilized in biotrickling filters (BTFs) due to their positive impact on shock load resistance and recovery performance. However, due to the inherent characteristics of its immobilized carrier, the immobilized filler is prone to swelling during the long-term operation of the system, resulting in increased pressure drop. Polyurethane (PU) sponge was used as the cross-linked skeleton of immobilized filler and compared with direct emulsified cross-linked immobilized filler for treating ethylbenzene gas. In the early stage, both fillers can maintain good performance despite changes in the inlet concentration and short-term stagnation. However, on the 107th day of operation, the immobilized filler experienced swelling, and the pressure drop sharply increased to 137.2 Pa, while the PU immobilized filler was still able to maintain a low-pressure drop level. The results of the microbial diversity analysis revealed that the microbial community structure of PU immobilized fillers remained relatively stable when responding to the fluctuations in operating conditions. PU sponges as the skeleton can effectively prolong the service life of the immobilized filler and improve the performance of the biotrickling filter.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03101-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03101-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Swelling problems in immobilized filler: an improvement method and comparative study of the effect of different fillers on biotrickling filters.
Immobilized fillers have been increasingly utilized in biotrickling filters (BTFs) due to their positive impact on shock load resistance and recovery performance. However, due to the inherent characteristics of its immobilized carrier, the immobilized filler is prone to swelling during the long-term operation of the system, resulting in increased pressure drop. Polyurethane (PU) sponge was used as the cross-linked skeleton of immobilized filler and compared with direct emulsified cross-linked immobilized filler for treating ethylbenzene gas. In the early stage, both fillers can maintain good performance despite changes in the inlet concentration and short-term stagnation. However, on the 107th day of operation, the immobilized filler experienced swelling, and the pressure drop sharply increased to 137.2 Pa, while the PU immobilized filler was still able to maintain a low-pressure drop level. The results of the microbial diversity analysis revealed that the microbial community structure of PU immobilized fillers remained relatively stable when responding to the fluctuations in operating conditions. PU sponges as the skeleton can effectively prolong the service life of the immobilized filler and improve the performance of the biotrickling filter.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.