Yong-Jie Xie, Ang Qian, Bin He, Yu-Biao Wu, Sheng Wang, Bing Xu, Guoqiang Yu, Xiufeng Han, X G Qiu
{"title":"手性磁体-超导体异质结构中天磁-超导涡旋对的可视化。","authors":"Yong-Jie Xie, Ang Qian, Bin He, Yu-Biao Wu, Sheng Wang, Bing Xu, Guoqiang Yu, Xiufeng Han, X G Qiu","doi":"10.1103/PhysRevLett.133.166706","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic skyrmions, the topological states possessing chiral magnetic structure with nontrivial topology, have been widely investigated as a promising candidate for spintronic devices. They can also couple with superconducting vortices to form skyrmion-vortex pairs, hosting Majorana zero mode, which is a potential candidate for topological quantum computing. Many theoretical proposals have been put forward on constructing skyrmion-vortex pairs in heterostructures of chiral magnets and superconductors. Nevertheless, how to generate skyrmion-vortex pairs in a controllable way experimentally remains a significant challenge. We have designed a heterostructure of a chiral magnet and superconductor [Ta/Ir/CoFeB/MgO]_{7}/Nb in which zero field Néel-type skyrmions can be stabilized and the superconducting vortices can couple with the skyrmions when Nb is in the superconducting state. We have directly observed the formation of skyrmion-superconducting vortex pairs that is dependent on the direction of the applied magnetic field. Our results provide an effective method to manipulate the quantum states of skyrmions with the help of superconducting vortices, which can be used to explore new routines to control the skyrmions for spintronics devices.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"133 16","pages":"166706"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of Skyrmion-Superconducting Vortex Pairs in a Chiral-Magnet-Superconductor Heterostructure.\",\"authors\":\"Yong-Jie Xie, Ang Qian, Bin He, Yu-Biao Wu, Sheng Wang, Bing Xu, Guoqiang Yu, Xiufeng Han, X G Qiu\",\"doi\":\"10.1103/PhysRevLett.133.166706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic skyrmions, the topological states possessing chiral magnetic structure with nontrivial topology, have been widely investigated as a promising candidate for spintronic devices. They can also couple with superconducting vortices to form skyrmion-vortex pairs, hosting Majorana zero mode, which is a potential candidate for topological quantum computing. Many theoretical proposals have been put forward on constructing skyrmion-vortex pairs in heterostructures of chiral magnets and superconductors. Nevertheless, how to generate skyrmion-vortex pairs in a controllable way experimentally remains a significant challenge. We have designed a heterostructure of a chiral magnet and superconductor [Ta/Ir/CoFeB/MgO]_{7}/Nb in which zero field Néel-type skyrmions can be stabilized and the superconducting vortices can couple with the skyrmions when Nb is in the superconducting state. We have directly observed the formation of skyrmion-superconducting vortex pairs that is dependent on the direction of the applied magnetic field. Our results provide an effective method to manipulate the quantum states of skyrmions with the help of superconducting vortices, which can be used to explore new routines to control the skyrmions for spintronics devices.</p>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"133 16\",\"pages\":\"166706\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevLett.133.166706\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.133.166706","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Visualization of Skyrmion-Superconducting Vortex Pairs in a Chiral-Magnet-Superconductor Heterostructure.
Magnetic skyrmions, the topological states possessing chiral magnetic structure with nontrivial topology, have been widely investigated as a promising candidate for spintronic devices. They can also couple with superconducting vortices to form skyrmion-vortex pairs, hosting Majorana zero mode, which is a potential candidate for topological quantum computing. Many theoretical proposals have been put forward on constructing skyrmion-vortex pairs in heterostructures of chiral magnets and superconductors. Nevertheless, how to generate skyrmion-vortex pairs in a controllable way experimentally remains a significant challenge. We have designed a heterostructure of a chiral magnet and superconductor [Ta/Ir/CoFeB/MgO]_{7}/Nb in which zero field Néel-type skyrmions can be stabilized and the superconducting vortices can couple with the skyrmions when Nb is in the superconducting state. We have directly observed the formation of skyrmion-superconducting vortex pairs that is dependent on the direction of the applied magnetic field. Our results provide an effective method to manipulate the quantum states of skyrmions with the help of superconducting vortices, which can be used to explore new routines to control the skyrmions for spintronics devices.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks