针对各种客户端的联合手指静脉呈现攻击检测

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Computer Vision Pub Date : 2024-05-30 DOI:10.1049/cvi2.12292
Hengyu Mu, Jian Guo, Xingli Liu, Chong Han, Lijuan Sun
{"title":"针对各种客户端的联合手指静脉呈现攻击检测","authors":"Hengyu Mu,&nbsp;Jian Guo,&nbsp;Xingli Liu,&nbsp;Chong Han,&nbsp;Lijuan Sun","doi":"10.1049/cvi2.12292","DOIUrl":null,"url":null,"abstract":"<p>Recently, the application of finger vein recognition has become popular. Studies have shown finger vein presentation attacks increasingly threaten these recognition devices. As a result, research on finger vein presentation attack detection (fvPAD) methods has received much attention. However, the current fvPAD methods have two limitations. (1) Most terminal devices cannot train fvPAD models independently due to a lack of data. (2) Several research institutes can train fvPAD models; however, these models perform poorly when applied to terminal devices due to inadequate generalisation. Consequently, it is difficult for threatened terminal devices to obtain an effective fvPAD model. To address this problem, the method of federated finger vein presentation attack detection for various clients is proposed, which is the first study that introduces federated learning (FL) to fvPAD. In the proposed method, the differences in data volume and computing power between clients are considered. Traditional FL clients are expanded into two categories: institutional and terminal clients. For institutional clients, an improved triplet training mode with FL is designed to enhance model generalisation. For terminal clients, their inability is solved to obtain effective fvPAD models. Finally, extensive experiments are conducted on three datasets, which demonstrate the superiority of our method.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 7","pages":"935-949"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12292","citationCount":"0","resultStr":"{\"title\":\"Federated finger vein presentation attack detection for various clients\",\"authors\":\"Hengyu Mu,&nbsp;Jian Guo,&nbsp;Xingli Liu,&nbsp;Chong Han,&nbsp;Lijuan Sun\",\"doi\":\"10.1049/cvi2.12292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, the application of finger vein recognition has become popular. Studies have shown finger vein presentation attacks increasingly threaten these recognition devices. As a result, research on finger vein presentation attack detection (fvPAD) methods has received much attention. However, the current fvPAD methods have two limitations. (1) Most terminal devices cannot train fvPAD models independently due to a lack of data. (2) Several research institutes can train fvPAD models; however, these models perform poorly when applied to terminal devices due to inadequate generalisation. Consequently, it is difficult for threatened terminal devices to obtain an effective fvPAD model. To address this problem, the method of federated finger vein presentation attack detection for various clients is proposed, which is the first study that introduces federated learning (FL) to fvPAD. In the proposed method, the differences in data volume and computing power between clients are considered. Traditional FL clients are expanded into two categories: institutional and terminal clients. For institutional clients, an improved triplet training mode with FL is designed to enhance model generalisation. For terminal clients, their inability is solved to obtain effective fvPAD models. Finally, extensive experiments are conducted on three datasets, which demonstrate the superiority of our method.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 7\",\"pages\":\"935-949\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12292\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12292\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12292","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,手指静脉识别的应用变得越来越流行。研究表明,手指静脉呈现攻击对这些识别设备的威胁越来越大。因此,有关手指静脉呈现攻击检测(fvPAD)方法的研究受到了广泛关注。然而,目前的 fvPAD 方法有两个局限性。(1) 由于缺乏数据,大多数终端设备无法独立训练 fvPAD 模型。(2) 一些研究机构可以训练 fvPAD 模型,但这些模型在应用于终端设备时由于泛化不足而表现不佳。因此,受到威胁的终端设备很难获得有效的 fvPAD 模型。针对这一问题,我们提出了针对不同客户端的联合手指静脉呈现攻击检测方法,这是首次将联合学习(FL)引入 fvPAD 的研究。在提出的方法中,考虑到了不同客户端在数据量和计算能力上的差异。传统的 FL 客户机扩展为两类:机构客户机和终端客户机。针对机构客户,设计了一种改进的三元组训练模式,以提高模型的泛化能力。对于终端客户,则解决了其无法获得有效 fvPAD 模型的问题。最后,我们在三个数据集上进行了大量实验,证明了我们方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Federated finger vein presentation attack detection for various clients

Recently, the application of finger vein recognition has become popular. Studies have shown finger vein presentation attacks increasingly threaten these recognition devices. As a result, research on finger vein presentation attack detection (fvPAD) methods has received much attention. However, the current fvPAD methods have two limitations. (1) Most terminal devices cannot train fvPAD models independently due to a lack of data. (2) Several research institutes can train fvPAD models; however, these models perform poorly when applied to terminal devices due to inadequate generalisation. Consequently, it is difficult for threatened terminal devices to obtain an effective fvPAD model. To address this problem, the method of federated finger vein presentation attack detection for various clients is proposed, which is the first study that introduces federated learning (FL) to fvPAD. In the proposed method, the differences in data volume and computing power between clients are considered. Traditional FL clients are expanded into two categories: institutional and terminal clients. For institutional clients, an improved triplet training mode with FL is designed to enhance model generalisation. For terminal clients, their inability is solved to obtain effective fvPAD models. Finally, extensive experiments are conducted on three datasets, which demonstrate the superiority of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
期刊最新文献
SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification Balanced parametric body prior for implicit clothed human reconstruction from a monocular RGB Social-ATPGNN: Prediction of multi-modal pedestrian trajectory of non-homogeneous social interaction HIST: Hierarchical and sequential transformer for image captioning Multi-modal video search by examples—A video quality impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1