直接观测两次日冕物质抛射前的冲击穿越:从太阳轨道器、风和 STEREO 观测中获得的启示

Yutian Chi, Chenglong Shen, Zhiyong Zhang, Mengjiao Xu, Dongwei Mao, Junyan Liu, Can Wang, Bingkun Yu, Jingyu Luo, Zhihui Zhong and Yuming Wang
{"title":"直接观测两次日冕物质抛射前的冲击穿越:从太阳轨道器、风和 STEREO 观测中获得的启示","authors":"Yutian Chi, Chenglong Shen, Zhiyong Zhang, Mengjiao Xu, Dongwei Mao, Junyan Liu, Can Wang, Bingkun Yu, Jingyu Luo, Zhihui Zhong and Yuming Wang","doi":"10.3847/2041-8213/ad87e8","DOIUrl":null,"url":null,"abstract":"The three successive coronal mass ejections (CMEs) that erupted from 2023 November 27–28, provide the first opportunity to shed light on the entire process of a shock propagating through, sequentially compressing, and modifying two preceding CMEs using in situ data from Solar Orbiter, Wind, and STEREO-A. We describe the interaction of the three CMEs as follows: CME-1 and CME-2 interacted with each other at distances close to the Sun. Subsequently, the shock (S3) driven by CME-3 caught up with and compressed ICME-2 before 0.83 au, forming a typical shock–ICME interaction event observed by the Solar Orbiter. The S3 continued to propagate, crossing ICME-2 and propagating into ICME-1 as observed by Wind, and completely overtaking both ICME-1 and ICME-2 at STEREO-A. The interaction between S3 and the preceding two ICMEs leads to a clear compression of preceding ICMEs including an increase in magnetic field (∼150%) and a reduction in the interval of ICMEs. It presents direct and compelling evidence that a shock can completely traverse two preceding CMEs, accompanied by a significant decrease in shock strength (magnetic compression ratio decrease from 1.74 to 1.49). Even though the three ICMEs interact significantly in the heliosphere, their magnetic field configurations exhibit coherence at different observation points, especially for ICME-3. Those results highlight the significant implications of shock–CME interactions for CME propagation and space weather forecasting.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Observations of a Shock Traversing Preceding Two Coronal Mass Ejections: Insights from Solar Orbiter, Wind, and STEREO Observations\",\"authors\":\"Yutian Chi, Chenglong Shen, Zhiyong Zhang, Mengjiao Xu, Dongwei Mao, Junyan Liu, Can Wang, Bingkun Yu, Jingyu Luo, Zhihui Zhong and Yuming Wang\",\"doi\":\"10.3847/2041-8213/ad87e8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The three successive coronal mass ejections (CMEs) that erupted from 2023 November 27–28, provide the first opportunity to shed light on the entire process of a shock propagating through, sequentially compressing, and modifying two preceding CMEs using in situ data from Solar Orbiter, Wind, and STEREO-A. We describe the interaction of the three CMEs as follows: CME-1 and CME-2 interacted with each other at distances close to the Sun. Subsequently, the shock (S3) driven by CME-3 caught up with and compressed ICME-2 before 0.83 au, forming a typical shock–ICME interaction event observed by the Solar Orbiter. The S3 continued to propagate, crossing ICME-2 and propagating into ICME-1 as observed by Wind, and completely overtaking both ICME-1 and ICME-2 at STEREO-A. The interaction between S3 and the preceding two ICMEs leads to a clear compression of preceding ICMEs including an increase in magnetic field (∼150%) and a reduction in the interval of ICMEs. It presents direct and compelling evidence that a shock can completely traverse two preceding CMEs, accompanied by a significant decrease in shock strength (magnetic compression ratio decrease from 1.74 to 1.49). Even though the three ICMEs interact significantly in the heliosphere, their magnetic field configurations exhibit coherence at different observation points, especially for ICME-3. Those results highlight the significant implications of shock–CME interactions for CME propagation and space weather forecasting.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad87e8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad87e8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2023 年 11 月 27-28 日连续爆发的三次日冕物质抛射(CMEs),首次为我们提供了一个机会,利用太阳轨道器、风和 STEREO-A 提供的现场数据,揭示冲击波传播、依次压缩和改变前两次 CMEs 的整个过程。我们对三个 CME 的相互作用描述如下:CME-1 和 CME-2 在靠近太阳的距离上相互作用。随后,CME-3 驱动的冲击(S3)在 0.83 au 之前追上并压缩了 ICME-2,形成了太阳轨道器观测到的典型冲击-ICME 相互作用事件。S3 继续传播,越过 ICME-2,传播到 Wind 观测到的 ICME-1,并在 STEREO-A 完全超过 ICME-1 和 ICME-2。S3和前两个ICME之间的相互作用导致了前两个ICME的明显压缩,包括磁场的增加(∼150%)和ICME间隔的缩短。它提供了直接和令人信服的证据,证明一个冲击可以完全穿越前面的两个CME,并伴随着冲击强度的显著下降(磁压缩比从1.74下降到1.49)。尽管这三个集成流体在日光层中发生了显著的相互作用,但它们的磁场配置在不同的观测点表现出一致性,尤其是集成流体-3。这些结果突出了冲击-CME相互作用对CME传播和空间天气预报的重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct Observations of a Shock Traversing Preceding Two Coronal Mass Ejections: Insights from Solar Orbiter, Wind, and STEREO Observations
The three successive coronal mass ejections (CMEs) that erupted from 2023 November 27–28, provide the first opportunity to shed light on the entire process of a shock propagating through, sequentially compressing, and modifying two preceding CMEs using in situ data from Solar Orbiter, Wind, and STEREO-A. We describe the interaction of the three CMEs as follows: CME-1 and CME-2 interacted with each other at distances close to the Sun. Subsequently, the shock (S3) driven by CME-3 caught up with and compressed ICME-2 before 0.83 au, forming a typical shock–ICME interaction event observed by the Solar Orbiter. The S3 continued to propagate, crossing ICME-2 and propagating into ICME-1 as observed by Wind, and completely overtaking both ICME-1 and ICME-2 at STEREO-A. The interaction between S3 and the preceding two ICMEs leads to a clear compression of preceding ICMEs including an increase in magnetic field (∼150%) and a reduction in the interval of ICMEs. It presents direct and compelling evidence that a shock can completely traverse two preceding CMEs, accompanied by a significant decrease in shock strength (magnetic compression ratio decrease from 1.74 to 1.49). Even though the three ICMEs interact significantly in the heliosphere, their magnetic field configurations exhibit coherence at different observation points, especially for ICME-3. Those results highlight the significant implications of shock–CME interactions for CME propagation and space weather forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Updated Cosmological Constraints in Extended Parameter Space with Planck PR4, DESI Baryon Acoustic Oscillations, and Supernovae: Dynamical Dark Energy, Neutrino Masses, Lensing Anomaly, and the Hubble Tension Rates and Beaming Angles of Gamma-Ray Bursts Associated with Compact Binary Coalescences Prominent Mid-infrared Excess of the Dwarf Planet (136472) Makemake Discovered by JWST/MIRI Indicates Ongoing Activity CEERS Key Paper. IX. Identifying Galaxy Mergers in CEERS NIRCam Images Using Random Forests and Convolutional Neural Networks Direct Measurements of Synchrotron-emitting Electrons at Near-Sun Shocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1