Yunyao Luo, Xi Zeng, Xue Dai, Yin Tian, Jie Li, Qi Zhang, Qiang Dong, Lifeng Qin, Guoning Huang, Qi Gu, Jianyu Wang, Jingyu Li
{"title":"纳米氧化铜颗粒通过破坏有丝分裂介导的新陈代谢损害小鼠植入前胚胎发育","authors":"Yunyao Luo, Xi Zeng, Xue Dai, Yin Tian, Jie Li, Qi Zhang, Qiang Dong, Lifeng Qin, Guoning Huang, Qi Gu, Jianyu Wang, Jingyu Li","doi":"10.1021/acsnano.4c09734","DOIUrl":null,"url":null,"abstract":"Copper oxide nanoparticles (CuONPs) have been widely applied, posing potential risks to human health. Although the toxicity of CuONPs on the liver and spleen has been reported, their effects on reproductive health remain unexplored. In this study, we investigate the effects of CuONPs on embryonic development and their potential mechanisms. Our results demonstrate that CuONPs exposure impairs mouse preimplantation embryonic development, particularly affecting the morula-to-blastocyst transition. Additionally, CuONPs were found to reduce the pluripotency of the inner cell mass (ICM) and mouse embryonic stem cells (mESCs). Mechanistically, CuONPs block autophagic flux and impair mitophagy, leading to the accumulation of damaged mitochondria. This mitochondrial dysfunction leads to reduced tricarboxylic acid (TCA) cycle activity and decreased α-ketoglutarate (α-KG) production. Insufficient α-KG induces the failure of DNA demethylation, reducing corresponding chromatin accessibility and consequently inhibiting ICM-specific genes expressions. Similar reduced development and inhibitions of pluripotency gene expression were observed in CuONPs-treated human blastocysts. Moreover, in women undergoing assisted reproductive technology (ART), a negative correlation was found between urinary Cu ion concentrations and clinical outcomes. Collectively, our study elucidates the mitophagy-mediated metabolic mechanisms of CuONPs embryotoxicity, improving our understanding of the potential reproductive toxicity associated with it.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper Oxide Nanoparticles Impair Mouse Preimplantation Embryonic Development through Disruption of Mitophagy-Mediated Metabolism\",\"authors\":\"Yunyao Luo, Xi Zeng, Xue Dai, Yin Tian, Jie Li, Qi Zhang, Qiang Dong, Lifeng Qin, Guoning Huang, Qi Gu, Jianyu Wang, Jingyu Li\",\"doi\":\"10.1021/acsnano.4c09734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper oxide nanoparticles (CuONPs) have been widely applied, posing potential risks to human health. Although the toxicity of CuONPs on the liver and spleen has been reported, their effects on reproductive health remain unexplored. In this study, we investigate the effects of CuONPs on embryonic development and their potential mechanisms. Our results demonstrate that CuONPs exposure impairs mouse preimplantation embryonic development, particularly affecting the morula-to-blastocyst transition. Additionally, CuONPs were found to reduce the pluripotency of the inner cell mass (ICM) and mouse embryonic stem cells (mESCs). Mechanistically, CuONPs block autophagic flux and impair mitophagy, leading to the accumulation of damaged mitochondria. This mitochondrial dysfunction leads to reduced tricarboxylic acid (TCA) cycle activity and decreased α-ketoglutarate (α-KG) production. Insufficient α-KG induces the failure of DNA demethylation, reducing corresponding chromatin accessibility and consequently inhibiting ICM-specific genes expressions. Similar reduced development and inhibitions of pluripotency gene expression were observed in CuONPs-treated human blastocysts. Moreover, in women undergoing assisted reproductive technology (ART), a negative correlation was found between urinary Cu ion concentrations and clinical outcomes. Collectively, our study elucidates the mitophagy-mediated metabolic mechanisms of CuONPs embryotoxicity, improving our understanding of the potential reproductive toxicity associated with it.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c09734\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09734","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Copper Oxide Nanoparticles Impair Mouse Preimplantation Embryonic Development through Disruption of Mitophagy-Mediated Metabolism
Copper oxide nanoparticles (CuONPs) have been widely applied, posing potential risks to human health. Although the toxicity of CuONPs on the liver and spleen has been reported, their effects on reproductive health remain unexplored. In this study, we investigate the effects of CuONPs on embryonic development and their potential mechanisms. Our results demonstrate that CuONPs exposure impairs mouse preimplantation embryonic development, particularly affecting the morula-to-blastocyst transition. Additionally, CuONPs were found to reduce the pluripotency of the inner cell mass (ICM) and mouse embryonic stem cells (mESCs). Mechanistically, CuONPs block autophagic flux and impair mitophagy, leading to the accumulation of damaged mitochondria. This mitochondrial dysfunction leads to reduced tricarboxylic acid (TCA) cycle activity and decreased α-ketoglutarate (α-KG) production. Insufficient α-KG induces the failure of DNA demethylation, reducing corresponding chromatin accessibility and consequently inhibiting ICM-specific genes expressions. Similar reduced development and inhibitions of pluripotency gene expression were observed in CuONPs-treated human blastocysts. Moreover, in women undergoing assisted reproductive technology (ART), a negative correlation was found between urinary Cu ion concentrations and clinical outcomes. Collectively, our study elucidates the mitophagy-mediated metabolic mechanisms of CuONPs embryotoxicity, improving our understanding of the potential reproductive toxicity associated with it.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.