Yunzhi Wang, Zhigang Song, Peng Ran, Hang Xiang, Ziyan Xu, Ning Xu, Mengjie Deng, Lingli Zhu, Yanan Yin, Jinwen Feng, Chen Ding, Wenjun Yang
{"title":"血清蛋白质组揭示了 H7N9 和 SARS-CoV-2 感染者的独特分子特征。","authors":"Yunzhi Wang, Zhigang Song, Peng Ran, Hang Xiang, Ziyan Xu, Ning Xu, Mengjie Deng, Lingli Zhu, Yanan Yin, Jinwen Feng, Chen Ding, Wenjun Yang","doi":"10.1016/j.celrep.2024.114900","DOIUrl":null,"url":null,"abstract":"<p><p>The coronavirus disease 2019 (COVID-19) pandemic has reminded us of human infections with the H7N9 virus and has raised questions related to the clinical and molecular pathophysiological diversity between the two diseases. Here, we performed a proteomic approach on sera samples from patients with H7N9-virus or SARS-CoV-2-virus infection and healthy controls. Compared to SARS-CoV-2, H7N9-virus infection caused elevated neutrophil concentrations, T cell exhaustion, and increased cytokine/interleukin secretion. Cell-type deconvolution and temporal analysis revealed that T cells and neutrophils could regulate the core immunological trajectory and influence the prognosis of patients with severe H7N9-virus infection. Elevated tissue-enhanced proteins combined with alterations of clinical biochemical indexes suggested that H7N9 infection induced more severe inflammatory organ injury and dysfunction in the liver and intestine. Further mechanical analysis revealed that the high concentration of neutrophils might impact the intestinal enterocyte cells through cytokine-receptor interaction, leading to intestinal damage in patients with H7N9-virus infection.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114900"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serum proteome reveals distinctive molecular features of H7N9- and SARS-CoV-2-infected patients.\",\"authors\":\"Yunzhi Wang, Zhigang Song, Peng Ran, Hang Xiang, Ziyan Xu, Ning Xu, Mengjie Deng, Lingli Zhu, Yanan Yin, Jinwen Feng, Chen Ding, Wenjun Yang\",\"doi\":\"10.1016/j.celrep.2024.114900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The coronavirus disease 2019 (COVID-19) pandemic has reminded us of human infections with the H7N9 virus and has raised questions related to the clinical and molecular pathophysiological diversity between the two diseases. Here, we performed a proteomic approach on sera samples from patients with H7N9-virus or SARS-CoV-2-virus infection and healthy controls. Compared to SARS-CoV-2, H7N9-virus infection caused elevated neutrophil concentrations, T cell exhaustion, and increased cytokine/interleukin secretion. Cell-type deconvolution and temporal analysis revealed that T cells and neutrophils could regulate the core immunological trajectory and influence the prognosis of patients with severe H7N9-virus infection. Elevated tissue-enhanced proteins combined with alterations of clinical biochemical indexes suggested that H7N9 infection induced more severe inflammatory organ injury and dysfunction in the liver and intestine. Further mechanical analysis revealed that the high concentration of neutrophils might impact the intestinal enterocyte cells through cytokine-receptor interaction, leading to intestinal damage in patients with H7N9-virus infection.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":\"43 11\",\"pages\":\"114900\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2024.114900\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114900","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Serum proteome reveals distinctive molecular features of H7N9- and SARS-CoV-2-infected patients.
The coronavirus disease 2019 (COVID-19) pandemic has reminded us of human infections with the H7N9 virus and has raised questions related to the clinical and molecular pathophysiological diversity between the two diseases. Here, we performed a proteomic approach on sera samples from patients with H7N9-virus or SARS-CoV-2-virus infection and healthy controls. Compared to SARS-CoV-2, H7N9-virus infection caused elevated neutrophil concentrations, T cell exhaustion, and increased cytokine/interleukin secretion. Cell-type deconvolution and temporal analysis revealed that T cells and neutrophils could regulate the core immunological trajectory and influence the prognosis of patients with severe H7N9-virus infection. Elevated tissue-enhanced proteins combined with alterations of clinical biochemical indexes suggested that H7N9 infection induced more severe inflammatory organ injury and dysfunction in the liver and intestine. Further mechanical analysis revealed that the high concentration of neutrophils might impact the intestinal enterocyte cells through cytokine-receptor interaction, leading to intestinal damage in patients with H7N9-virus infection.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.