{"title":"先天性免疫与特异性免疫与心力衰竭发病率的关系:一项前瞻性研究。","authors":"Junxue Wang, Ziteng Zhang, Ying Sun, Bowei Yu, Yuying Wang, Yingli Lu, Jiao Yu, Ningjian Wang, Fangzhen Xia","doi":"10.1136/heartjnl-2024-324591","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immune disorders are key heart failure (HF) triggers, but little is known about whether the status of immunity affects the incidence of HF. To explore this, we used blood cell counts and derived ratios to investigate the association between immunity status markers and HF incidence.</p><p><strong>Methods: </strong>The number and proportion of peripheral blood leucocytes in a physiological state are related to the body's immune status. Neutrophils, monocytes, SII (systemic immune-inflammatory index), NLR (neutrophil-to-lymphocyte ratio), and PLR (platelet-to-lymphocyte ratio) serve as innate immunity status markers, while lymphocytes and LMR (lymphocyte-to-monocyte ratio) serve as specific immunity status markers. 330 362 UK Biobank (UKB) participants were finally examined. Cox proportional hazard models were used to explore the relationship between immunity status markers and HF incidence. Flexible parametric survival models were used to capture time-varying relationships between blood cell ratios and HRs for HF. Subgroup analyses were conducted by age, sex, and body mass index. Finally, sensitivity analyses were performed to validate the results.</p><p><strong>Results: </strong>During a median follow-up of 14.1 years, 9611 (2.9%) participants developed HF. Neutrophils, monocytes, SII, and NLR were positively associated with HF incidence, with fully adjusted per SD increment HR (95% CI) of 1.20 (1.17 to 1.22), 1.09 (1.07 to 1.12), 1.12 (1.10 to 1.14), and 1.16 (1.14 to 1.18), respectively. Platelets, lymphocytes, and LMR were inversely correlated with HF incidence, with fully adjusted per SD increment HR (95% CI) of 0.97 (0.95 to 1.00), 0.97 (0.95 to 0.99), and 0.90 (0.88 to 0.92), respectively.</p><p><strong>Conclusions: </strong>The innate immunity status markers were positively associated with HF incidence, while specific immunity status markers exhibited an inverse association, offering novel insights for HF prediction and intervention.</p>","PeriodicalId":12835,"journal":{"name":"Heart","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of innate versus specific immunity with heart failure incidence: a prospective study.\",\"authors\":\"Junxue Wang, Ziteng Zhang, Ying Sun, Bowei Yu, Yuying Wang, Yingli Lu, Jiao Yu, Ningjian Wang, Fangzhen Xia\",\"doi\":\"10.1136/heartjnl-2024-324591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Immune disorders are key heart failure (HF) triggers, but little is known about whether the status of immunity affects the incidence of HF. To explore this, we used blood cell counts and derived ratios to investigate the association between immunity status markers and HF incidence.</p><p><strong>Methods: </strong>The number and proportion of peripheral blood leucocytes in a physiological state are related to the body's immune status. Neutrophils, monocytes, SII (systemic immune-inflammatory index), NLR (neutrophil-to-lymphocyte ratio), and PLR (platelet-to-lymphocyte ratio) serve as innate immunity status markers, while lymphocytes and LMR (lymphocyte-to-monocyte ratio) serve as specific immunity status markers. 330 362 UK Biobank (UKB) participants were finally examined. Cox proportional hazard models were used to explore the relationship between immunity status markers and HF incidence. Flexible parametric survival models were used to capture time-varying relationships between blood cell ratios and HRs for HF. Subgroup analyses were conducted by age, sex, and body mass index. Finally, sensitivity analyses were performed to validate the results.</p><p><strong>Results: </strong>During a median follow-up of 14.1 years, 9611 (2.9%) participants developed HF. Neutrophils, monocytes, SII, and NLR were positively associated with HF incidence, with fully adjusted per SD increment HR (95% CI) of 1.20 (1.17 to 1.22), 1.09 (1.07 to 1.12), 1.12 (1.10 to 1.14), and 1.16 (1.14 to 1.18), respectively. Platelets, lymphocytes, and LMR were inversely correlated with HF incidence, with fully adjusted per SD increment HR (95% CI) of 0.97 (0.95 to 1.00), 0.97 (0.95 to 0.99), and 0.90 (0.88 to 0.92), respectively.</p><p><strong>Conclusions: </strong>The innate immunity status markers were positively associated with HF incidence, while specific immunity status markers exhibited an inverse association, offering novel insights for HF prediction and intervention.</p>\",\"PeriodicalId\":12835,\"journal\":{\"name\":\"Heart\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heart\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/heartjnl-2024-324591\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/heartjnl-2024-324591","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Association of innate versus specific immunity with heart failure incidence: a prospective study.
Background: Immune disorders are key heart failure (HF) triggers, but little is known about whether the status of immunity affects the incidence of HF. To explore this, we used blood cell counts and derived ratios to investigate the association between immunity status markers and HF incidence.
Methods: The number and proportion of peripheral blood leucocytes in a physiological state are related to the body's immune status. Neutrophils, monocytes, SII (systemic immune-inflammatory index), NLR (neutrophil-to-lymphocyte ratio), and PLR (platelet-to-lymphocyte ratio) serve as innate immunity status markers, while lymphocytes and LMR (lymphocyte-to-monocyte ratio) serve as specific immunity status markers. 330 362 UK Biobank (UKB) participants were finally examined. Cox proportional hazard models were used to explore the relationship between immunity status markers and HF incidence. Flexible parametric survival models were used to capture time-varying relationships between blood cell ratios and HRs for HF. Subgroup analyses were conducted by age, sex, and body mass index. Finally, sensitivity analyses were performed to validate the results.
Results: During a median follow-up of 14.1 years, 9611 (2.9%) participants developed HF. Neutrophils, monocytes, SII, and NLR were positively associated with HF incidence, with fully adjusted per SD increment HR (95% CI) of 1.20 (1.17 to 1.22), 1.09 (1.07 to 1.12), 1.12 (1.10 to 1.14), and 1.16 (1.14 to 1.18), respectively. Platelets, lymphocytes, and LMR were inversely correlated with HF incidence, with fully adjusted per SD increment HR (95% CI) of 0.97 (0.95 to 1.00), 0.97 (0.95 to 0.99), and 0.90 (0.88 to 0.92), respectively.
Conclusions: The innate immunity status markers were positively associated with HF incidence, while specific immunity status markers exhibited an inverse association, offering novel insights for HF prediction and intervention.
期刊介绍:
Heart is an international peer reviewed journal that keeps cardiologists up to date with important research advances in cardiovascular disease. New scientific developments are highlighted in editorials and put in context with concise review articles. There is one free Editor’s Choice article in each issue, with open access options available to authors for all articles. Education in Heart articles provide a comprehensive, continuously updated, cardiology curriculum.