Trine O Eskesen, Kristian Almstrup, Laurits Elgaard, Tobias Arleth, Mathilde L Lassen, Andreas Creutzburg, Alice Herrlin Jensen, Niklas Breindahl, Felicia Dinesen, Malene Vang, Erik Sørensen, Anders Wallin Paulsen, Tatiana Nielsen, Lars S Rasmussen, Martin Sillesen, Jacob Steinmetz
{"title":"严重创伤与 DNA 甲基化的深刻变化有关。","authors":"Trine O Eskesen, Kristian Almstrup, Laurits Elgaard, Tobias Arleth, Mathilde L Lassen, Andreas Creutzburg, Alice Herrlin Jensen, Niklas Breindahl, Felicia Dinesen, Malene Vang, Erik Sørensen, Anders Wallin Paulsen, Tatiana Nielsen, Lars S Rasmussen, Martin Sillesen, Jacob Steinmetz","doi":"10.1038/s41525-024-00438-4","DOIUrl":null,"url":null,"abstract":"<p><p>Whether DNA methylation changes follow human physical trauma is uncertain. We aimed to investigate if severe trauma was associated with DNA methylation changes. In a prospective, observational, clinical study, we included severely injured adults and adults undergoing elective surgery (controls). Blood was obtained from trauma patients (n = 60) immediately- and 30-45 days post-trauma, and from surgical patients (n = 57) pre-, post-, and 30-45 days post-surgery. Epigenome-wide DNA methylation profiling was performed and analyzed for significant differentially methylated CpGs and -regions (DMRs) within and between groups. Within the trauma group we identified 10,126 significant differentially methylated CpGs and 1169 DMRs. No significant differential methylation was found in the surgical group. In the trauma group, differentially methylated sites were enriched in genes and pathways involved in blood coagulation and inflammatory response. Severe trauma was associated with profound alterations in the DNA methylome of circulating leucocytes, and differential methylation was located in trauma-relevant genes.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530621/pdf/","citationCount":"0","resultStr":"{\"title\":\"Severe traumatic injury is associated with profound changes in DNA methylation.\",\"authors\":\"Trine O Eskesen, Kristian Almstrup, Laurits Elgaard, Tobias Arleth, Mathilde L Lassen, Andreas Creutzburg, Alice Herrlin Jensen, Niklas Breindahl, Felicia Dinesen, Malene Vang, Erik Sørensen, Anders Wallin Paulsen, Tatiana Nielsen, Lars S Rasmussen, Martin Sillesen, Jacob Steinmetz\",\"doi\":\"10.1038/s41525-024-00438-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whether DNA methylation changes follow human physical trauma is uncertain. We aimed to investigate if severe trauma was associated with DNA methylation changes. In a prospective, observational, clinical study, we included severely injured adults and adults undergoing elective surgery (controls). Blood was obtained from trauma patients (n = 60) immediately- and 30-45 days post-trauma, and from surgical patients (n = 57) pre-, post-, and 30-45 days post-surgery. Epigenome-wide DNA methylation profiling was performed and analyzed for significant differentially methylated CpGs and -regions (DMRs) within and between groups. Within the trauma group we identified 10,126 significant differentially methylated CpGs and 1169 DMRs. No significant differential methylation was found in the surgical group. In the trauma group, differentially methylated sites were enriched in genes and pathways involved in blood coagulation and inflammatory response. Severe trauma was associated with profound alterations in the DNA methylome of circulating leucocytes, and differential methylation was located in trauma-relevant genes.</p>\",\"PeriodicalId\":19273,\"journal\":{\"name\":\"NPJ Genomic Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530621/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41525-024-00438-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-024-00438-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
DNA甲基化是否会随着人类身体创伤而发生变化尚不确定。我们旨在研究严重创伤是否与 DNA 甲基化变化有关。在一项前瞻性、观察性临床研究中,我们纳入了严重受伤的成年人和接受择期手术的成年人(对照组)。我们采集了创伤患者(60 人)和手术患者(57 人)的血液,分别取自创伤初期和创伤后 30-45 天和手术前、手术后和手术后 30-45 天。在表观基因组范围内进行了DNA甲基化分析,并对组内和组间存在显著差异的甲基化CpGs和区域(DMRs)进行了分析。在创伤组中,我们发现了 10,126 个具有显著差异的甲基化 CpGs 和 1169 个 DMRs。手术组没有发现明显的甲基化差异。在创伤组中,差异甲基化位点富集在涉及血液凝固和炎症反应的基因和通路中。严重创伤与循环白细胞 DNA 甲基组的深刻改变有关,差异甲基化位于创伤相关基因。
Severe traumatic injury is associated with profound changes in DNA methylation.
Whether DNA methylation changes follow human physical trauma is uncertain. We aimed to investigate if severe trauma was associated with DNA methylation changes. In a prospective, observational, clinical study, we included severely injured adults and adults undergoing elective surgery (controls). Blood was obtained from trauma patients (n = 60) immediately- and 30-45 days post-trauma, and from surgical patients (n = 57) pre-, post-, and 30-45 days post-surgery. Epigenome-wide DNA methylation profiling was performed and analyzed for significant differentially methylated CpGs and -regions (DMRs) within and between groups. Within the trauma group we identified 10,126 significant differentially methylated CpGs and 1169 DMRs. No significant differential methylation was found in the surgical group. In the trauma group, differentially methylated sites were enriched in genes and pathways involved in blood coagulation and inflammatory response. Severe trauma was associated with profound alterations in the DNA methylome of circulating leucocytes, and differential methylation was located in trauma-relevant genes.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.