{"title":"锰(II)在低电流密度、低氧进化电位的阳极上增强有机污染物电氧化作用的独特作用。","authors":"Erdan Hu, Yuhua Ye, Bing Wang, Hefa Cheng","doi":"10.1016/j.jhazmat.2024.136332","DOIUrl":null,"url":null,"abstract":"<p><p>This study systematically explored the role of Mn(II) in the removal of 4-chlorophenol (4-CP) by electro-oxidation (EO) employing anodes with low oxygen evolution potential (OEP), i.e., Ti/RuO<sub>2</sub>-IrO<sub>2</sub>, Ti/Pt, and Ti/Ti<sub>4</sub>O<sub>7</sub>, as well as anodes with high OEP, namely, Ti/PbO<sub>2</sub>, Ti/SnO<sub>2</sub>, and boron-doped diamond (Si/BDD). Mn(II) significantly promoted 4-CP removal on the anodes with low OEP at fairly low current density (0.04 to 1 mA/cm<sup>2</sup>), but had minimal to negative impact on those with high OEP. Cyclic voltammetry and X-ray photoelectron spectra revealed that Mn(II) was oxidized to Mn(III), then to Mn(IV) on the anodes with low OEP, whereas its was oxidized directly to Mn(IV) on those with high OEP. Deposition of manganese oxide on the anodes with low OEP suppressed oxygen evolution reaction (OER) in EO process, but enhanced OER on those with high OEP. Quenching and spectral results consistently indicated that Mn(III) and Mn(IV) were the primary species responsible for enhancing 4-CP removal on the anodes with low OEP. These findings provide mechanistic insights into the redox transformation of Mn(II) in EO and the theoretical basis for a novel strategy to boost pollutant degradation in EO systems using low OEP anodes through coupling with the redox chemistry of manganese.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136332"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique role of Mn(II) in enhancing electro-oxidation of organic pollutants on anodes with low oxygen evolution potential at low current density.\",\"authors\":\"Erdan Hu, Yuhua Ye, Bing Wang, Hefa Cheng\",\"doi\":\"10.1016/j.jhazmat.2024.136332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study systematically explored the role of Mn(II) in the removal of 4-chlorophenol (4-CP) by electro-oxidation (EO) employing anodes with low oxygen evolution potential (OEP), i.e., Ti/RuO<sub>2</sub>-IrO<sub>2</sub>, Ti/Pt, and Ti/Ti<sub>4</sub>O<sub>7</sub>, as well as anodes with high OEP, namely, Ti/PbO<sub>2</sub>, Ti/SnO<sub>2</sub>, and boron-doped diamond (Si/BDD). Mn(II) significantly promoted 4-CP removal on the anodes with low OEP at fairly low current density (0.04 to 1 mA/cm<sup>2</sup>), but had minimal to negative impact on those with high OEP. Cyclic voltammetry and X-ray photoelectron spectra revealed that Mn(II) was oxidized to Mn(III), then to Mn(IV) on the anodes with low OEP, whereas its was oxidized directly to Mn(IV) on those with high OEP. Deposition of manganese oxide on the anodes with low OEP suppressed oxygen evolution reaction (OER) in EO process, but enhanced OER on those with high OEP. Quenching and spectral results consistently indicated that Mn(III) and Mn(IV) were the primary species responsible for enhancing 4-CP removal on the anodes with low OEP. These findings provide mechanistic insights into the redox transformation of Mn(II) in EO and the theoretical basis for a novel strategy to boost pollutant degradation in EO systems using low OEP anodes through coupling with the redox chemistry of manganese.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"480 \",\"pages\":\"136332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unique role of Mn(II) in enhancing electro-oxidation of organic pollutants on anodes with low oxygen evolution potential at low current density.
This study systematically explored the role of Mn(II) in the removal of 4-chlorophenol (4-CP) by electro-oxidation (EO) employing anodes with low oxygen evolution potential (OEP), i.e., Ti/RuO2-IrO2, Ti/Pt, and Ti/Ti4O7, as well as anodes with high OEP, namely, Ti/PbO2, Ti/SnO2, and boron-doped diamond (Si/BDD). Mn(II) significantly promoted 4-CP removal on the anodes with low OEP at fairly low current density (0.04 to 1 mA/cm2), but had minimal to negative impact on those with high OEP. Cyclic voltammetry and X-ray photoelectron spectra revealed that Mn(II) was oxidized to Mn(III), then to Mn(IV) on the anodes with low OEP, whereas its was oxidized directly to Mn(IV) on those with high OEP. Deposition of manganese oxide on the anodes with low OEP suppressed oxygen evolution reaction (OER) in EO process, but enhanced OER on those with high OEP. Quenching and spectral results consistently indicated that Mn(III) and Mn(IV) were the primary species responsible for enhancing 4-CP removal on the anodes with low OEP. These findings provide mechanistic insights into the redox transformation of Mn(II) in EO and the theoretical basis for a novel strategy to boost pollutant degradation in EO systems using low OEP anodes through coupling with the redox chemistry of manganese.