更安全的间隙:利用基于间隙的局部规划器实现平面非全局机器人的安全导航

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-10-24 DOI:10.1109/LRA.2024.3486231
Shiyu Feng;Ahmad Abuaish;Patricio A. Vela
{"title":"更安全的间隙:利用基于间隙的局部规划器实现平面非全局机器人的安全导航","authors":"Shiyu Feng;Ahmad Abuaish;Patricio A. Vela","doi":"10.1109/LRA.2024.3486231","DOIUrl":null,"url":null,"abstract":"This paper extends the gap-based navigation technique \n<italic>Potential Gap</i>\n with safety guarantees at the local planning level for a kinematic planar nonholonomic robot model, leading to \n<italic>Safer Gap</i>\n. It relies on a subset of navigable free space from the robot to a gap, denoted the keyhole region. The region is defined by the union of the largest collision-free disc centered on the robot and a collision-free trapezoidal region directed through the gap. \n<italic>Safer Gap</i>\n first generates Bézier-based collision-free paths within the keyhole regions. The keyhole region of the top scoring path is encoded by a shallow neural network-based zeroing barrier function (ZBF) synthesized in real-time. Nonlinear Model Predictive Control (NMPC) with \n<italic>Keyhole ZBF</i>\n constraints and output tracking of the Bézier path, synthesizes a safe kinematically feasible trajectory. The \n<italic>Potential Gap</i>\n projection operator serves as a last action to enforce safety if the NMPC optimization fails to converge to a solution within the prescribed time. Simulation and experimental validation of \n<italic>Safer Gap</i>\n confirm its collision-free navigation properties.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11034-11041"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safer Gap: Safe Navigation of Planar Nonholonomic Robots With a Gap-Based Local Planner\",\"authors\":\"Shiyu Feng;Ahmad Abuaish;Patricio A. Vela\",\"doi\":\"10.1109/LRA.2024.3486231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends the gap-based navigation technique \\n<italic>Potential Gap</i>\\n with safety guarantees at the local planning level for a kinematic planar nonholonomic robot model, leading to \\n<italic>Safer Gap</i>\\n. It relies on a subset of navigable free space from the robot to a gap, denoted the keyhole region. The region is defined by the union of the largest collision-free disc centered on the robot and a collision-free trapezoidal region directed through the gap. \\n<italic>Safer Gap</i>\\n first generates Bézier-based collision-free paths within the keyhole regions. The keyhole region of the top scoring path is encoded by a shallow neural network-based zeroing barrier function (ZBF) synthesized in real-time. Nonlinear Model Predictive Control (NMPC) with \\n<italic>Keyhole ZBF</i>\\n constraints and output tracking of the Bézier path, synthesizes a safe kinematically feasible trajectory. The \\n<italic>Potential Gap</i>\\n projection operator serves as a last action to enforce safety if the NMPC optimization fails to converge to a solution within the prescribed time. Simulation and experimental validation of \\n<italic>Safer Gap</i>\\n confirm its collision-free navigation properties.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11034-11041\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10734154/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10734154/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文对基于间隙的导航技术 "潜在间隙"(Potential Gap)进行了扩展,为运动学平面非全局机器人模型提供了局部规划层面的安全保证,从而实现了 "更安全的间隙"(Safer Gap)。它依赖于从机器人到间隙的可导航自由空间子集,表示为钥匙孔区域。该区域由以机器人为中心的最大无碰撞圆盘和穿过间隙的无碰撞梯形区域的结合体定义。Safer Gap 首先在锁孔区域内生成基于贝塞尔的无碰撞路径。得分最高路径的锁孔区域由实时合成的基于浅层神经网络的归零障碍函数(ZBF)编码。非线性模型预测控制(NMPC)利用锁孔 ZBF 约束和贝塞尔路径的输出跟踪,合成出安全的运动学可行轨迹。如果 NMPC 优化未能在规定时间内收敛到一个解决方案,潜在间隙投影算子将作为最后的行动,以确保安全。Safer Gap 的仿真和实验验证证实了其无碰撞导航特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safer Gap: Safe Navigation of Planar Nonholonomic Robots With a Gap-Based Local Planner
This paper extends the gap-based navigation technique Potential Gap with safety guarantees at the local planning level for a kinematic planar nonholonomic robot model, leading to Safer Gap . It relies on a subset of navigable free space from the robot to a gap, denoted the keyhole region. The region is defined by the union of the largest collision-free disc centered on the robot and a collision-free trapezoidal region directed through the gap. Safer Gap first generates Bézier-based collision-free paths within the keyhole regions. The keyhole region of the top scoring path is encoded by a shallow neural network-based zeroing barrier function (ZBF) synthesized in real-time. Nonlinear Model Predictive Control (NMPC) with Keyhole ZBF constraints and output tracking of the Bézier path, synthesizes a safe kinematically feasible trajectory. The Potential Gap projection operator serves as a last action to enforce safety if the NMPC optimization fails to converge to a solution within the prescribed time. Simulation and experimental validation of Safer Gap confirm its collision-free navigation properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1