Yulin Li;Chunxin Zheng;Kai Chen;Yusen Xie;Xindong Tang;Michael Yu Wang;Jun Ma
{"title":"利用平方和编程实现杂乱环境中的无碰撞轨迹优化","authors":"Yulin Li;Chunxin Zheng;Kai Chen;Yusen Xie;Xindong Tang;Michael Yu Wang;Jun Ma","doi":"10.1109/LRA.2024.3486235","DOIUrl":null,"url":null,"abstract":"In this work, we propose a trajectory optimization approach for robot navigation in cluttered 3D environments. We represent the robot's geometry as a semialgebraic set defined by polynomial inequalities such that robots with general shapes can be suitably characterized. We exploit the collision-free space directly to construct a graph of free regions, search for the reference path, and allocate each waypoint on the trajectory to a specific region. Then, we incorporate a uniform scaling factor for each free region and formulate a Sums-of-Squares (SOS) optimization problem whose optimal solutions reveal the containment relationship between robots and the free space. The SOS optimization problem is further reformulated to a semidefinite program (SDP), and the collision-free constraints are shown to be equivalent to limiting the scaling factor along the entire trajectory. Next, to solve the trajectory optimization problem with the proposed safety constraints, we derive a guiding direction for updating the robot configuration to decrease the minimum scaling factor by calculating the gradient of the Lagrangian at the primal-dual optimum of the SDP. As a result, this seamlessly facilitates the use of gradient-based methods in efficient solving of the trajectory optimization problem. Through a series of simulations and real-world experiments, the proposed trajectory optimization approach is validated in various challenging scenarios, and the results demonstrate its effectiveness in generating collision-free trajectories in dense and intricate environments.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11026-11033"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collision-Free Trajectory Optimization in Cluttered Environments Using Sums-of-Squares Programming\",\"authors\":\"Yulin Li;Chunxin Zheng;Kai Chen;Yusen Xie;Xindong Tang;Michael Yu Wang;Jun Ma\",\"doi\":\"10.1109/LRA.2024.3486235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a trajectory optimization approach for robot navigation in cluttered 3D environments. We represent the robot's geometry as a semialgebraic set defined by polynomial inequalities such that robots with general shapes can be suitably characterized. We exploit the collision-free space directly to construct a graph of free regions, search for the reference path, and allocate each waypoint on the trajectory to a specific region. Then, we incorporate a uniform scaling factor for each free region and formulate a Sums-of-Squares (SOS) optimization problem whose optimal solutions reveal the containment relationship between robots and the free space. The SOS optimization problem is further reformulated to a semidefinite program (SDP), and the collision-free constraints are shown to be equivalent to limiting the scaling factor along the entire trajectory. Next, to solve the trajectory optimization problem with the proposed safety constraints, we derive a guiding direction for updating the robot configuration to decrease the minimum scaling factor by calculating the gradient of the Lagrangian at the primal-dual optimum of the SDP. As a result, this seamlessly facilitates the use of gradient-based methods in efficient solving of the trajectory optimization problem. Through a series of simulations and real-world experiments, the proposed trajectory optimization approach is validated in various challenging scenarios, and the results demonstrate its effectiveness in generating collision-free trajectories in dense and intricate environments.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11026-11033\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10733988/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10733988/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Collision-Free Trajectory Optimization in Cluttered Environments Using Sums-of-Squares Programming
In this work, we propose a trajectory optimization approach for robot navigation in cluttered 3D environments. We represent the robot's geometry as a semialgebraic set defined by polynomial inequalities such that robots with general shapes can be suitably characterized. We exploit the collision-free space directly to construct a graph of free regions, search for the reference path, and allocate each waypoint on the trajectory to a specific region. Then, we incorporate a uniform scaling factor for each free region and formulate a Sums-of-Squares (SOS) optimization problem whose optimal solutions reveal the containment relationship between robots and the free space. The SOS optimization problem is further reformulated to a semidefinite program (SDP), and the collision-free constraints are shown to be equivalent to limiting the scaling factor along the entire trajectory. Next, to solve the trajectory optimization problem with the proposed safety constraints, we derive a guiding direction for updating the robot configuration to decrease the minimum scaling factor by calculating the gradient of the Lagrangian at the primal-dual optimum of the SDP. As a result, this seamlessly facilitates the use of gradient-based methods in efficient solving of the trajectory optimization problem. Through a series of simulations and real-world experiments, the proposed trajectory optimization approach is validated in various challenging scenarios, and the results demonstrate its effectiveness in generating collision-free trajectories in dense and intricate environments.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.