Xiaojie Diao;Juncai Long;Jituo Li;Chengdi Zhou;Huixu Dong;Guodong Lu
{"title":"基于机器学习的具有可重新编程刚度的机器人变形界面的设计与形状控制","authors":"Xiaojie Diao;Juncai Long;Jituo Li;Chengdi Zhou;Huixu Dong;Guodong Lu","doi":"10.1109/LRA.2024.3484160","DOIUrl":null,"url":null,"abstract":"Deformable organisms in nature inspire the design of shape-shifting robots, including soft robots, bionic robots and physical human-robot interfaces. However, to achieve multi-objective shape imitation and multi-form transformation, shape-shifting robots often require complex actuation systems, control strategies, and inverse design algorithms. In this letter, we propose a robotic morphing interface with reprogrammable stiffness (RoMI-RS) based on machine learning. RoMI-RS uses a circular elastic bilayer as the base, which can produce isotropic deformation under pneumatic actuation. By repeatedly attaching and detaching high-stiffness limiting layers to the surface of the base, the stiffness distribution can be reprogrammed, guiding anisotropic deformation. Thus, without changing the base material or actuation mechanism, RoMI-RS can precisely mimic various static shapes and dynamic movements. To address the nonlinear coupling of soft materials and pneumatic actuation, we employed a data-driven approach to inversely design limiting layer arrangements (i.e., the stiffness distribution of RoMI-RS) in the form of images. Hence, our proposed pneumatic RoMI-RS not only responds quickly and deforms reversibly but also allows users to intuitively and rapidly reconfigure target shapes. We also demonstrate the applications of RoMI-RS in shape-shifting robotics, particularly in soft grippers and physical human-robot interfaces, verifying its deformation flexibility and adaptability.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"10930-10937"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Shape Control of Robotic Morphing Interface With Reprogrammable Stiffness Based on Machine Learning\",\"authors\":\"Xiaojie Diao;Juncai Long;Jituo Li;Chengdi Zhou;Huixu Dong;Guodong Lu\",\"doi\":\"10.1109/LRA.2024.3484160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deformable organisms in nature inspire the design of shape-shifting robots, including soft robots, bionic robots and physical human-robot interfaces. However, to achieve multi-objective shape imitation and multi-form transformation, shape-shifting robots often require complex actuation systems, control strategies, and inverse design algorithms. In this letter, we propose a robotic morphing interface with reprogrammable stiffness (RoMI-RS) based on machine learning. RoMI-RS uses a circular elastic bilayer as the base, which can produce isotropic deformation under pneumatic actuation. By repeatedly attaching and detaching high-stiffness limiting layers to the surface of the base, the stiffness distribution can be reprogrammed, guiding anisotropic deformation. Thus, without changing the base material or actuation mechanism, RoMI-RS can precisely mimic various static shapes and dynamic movements. To address the nonlinear coupling of soft materials and pneumatic actuation, we employed a data-driven approach to inversely design limiting layer arrangements (i.e., the stiffness distribution of RoMI-RS) in the form of images. Hence, our proposed pneumatic RoMI-RS not only responds quickly and deforms reversibly but also allows users to intuitively and rapidly reconfigure target shapes. We also demonstrate the applications of RoMI-RS in shape-shifting robotics, particularly in soft grippers and physical human-robot interfaces, verifying its deformation flexibility and adaptability.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"10930-10937\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10723810/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10723810/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Design and Shape Control of Robotic Morphing Interface With Reprogrammable Stiffness Based on Machine Learning
Deformable organisms in nature inspire the design of shape-shifting robots, including soft robots, bionic robots and physical human-robot interfaces. However, to achieve multi-objective shape imitation and multi-form transformation, shape-shifting robots often require complex actuation systems, control strategies, and inverse design algorithms. In this letter, we propose a robotic morphing interface with reprogrammable stiffness (RoMI-RS) based on machine learning. RoMI-RS uses a circular elastic bilayer as the base, which can produce isotropic deformation under pneumatic actuation. By repeatedly attaching and detaching high-stiffness limiting layers to the surface of the base, the stiffness distribution can be reprogrammed, guiding anisotropic deformation. Thus, without changing the base material or actuation mechanism, RoMI-RS can precisely mimic various static shapes and dynamic movements. To address the nonlinear coupling of soft materials and pneumatic actuation, we employed a data-driven approach to inversely design limiting layer arrangements (i.e., the stiffness distribution of RoMI-RS) in the form of images. Hence, our proposed pneumatic RoMI-RS not only responds quickly and deforms reversibly but also allows users to intuitively and rapidly reconfigure target shapes. We also demonstrate the applications of RoMI-RS in shape-shifting robotics, particularly in soft grippers and physical human-robot interfaces, verifying its deformation flexibility and adaptability.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.