基于稳定一周期非线性激光动力学和受激布里渊散射的 STFT

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Photonics Technology Letters Pub Date : 2024-10-25 DOI:10.1109/LPT.2024.3486625
Sunan Zhang;Taixia Shi;Lizhong Jiang;Yang Chen
{"title":"基于稳定一周期非线性激光动力学和受激布里渊散射的 STFT","authors":"Sunan Zhang;Taixia Shi;Lizhong Jiang;Yang Chen","doi":"10.1109/LPT.2024.3486625","DOIUrl":null,"url":null,"abstract":"A microwave photonic short-time Fourier transform (STFT) system based on stabilized period-one (P1) nonlinear laser dynamics and stimulated Brillouin scattering (SBS) is proposed. By using an optoelectronic feedback loop, the frequency-sweep optical signal generated by the P1 nonlinear laser dynamics is stabilized, which is further used in conjunction with an optical bandpass filter implemented by SBS to achieve the frequency-to-time mapping of microwave signals and the final STFT. By comparing the results with and without optoelectronic feedback, it is found that the time-frequency diagram of the signal under test (SUT) obtained by STFT is clearer and smoother, and the frequency of the SUT measured in each frequency-sweep period is more accurate. The measurement error is reduced by around 50% under the optimal filter bandwidth.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 24","pages":"1421-1424"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STFT Based on Stabilized Period-One Nonlinear Laser Dynamics and Stimulated Brillouin Scattering\",\"authors\":\"Sunan Zhang;Taixia Shi;Lizhong Jiang;Yang Chen\",\"doi\":\"10.1109/LPT.2024.3486625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A microwave photonic short-time Fourier transform (STFT) system based on stabilized period-one (P1) nonlinear laser dynamics and stimulated Brillouin scattering (SBS) is proposed. By using an optoelectronic feedback loop, the frequency-sweep optical signal generated by the P1 nonlinear laser dynamics is stabilized, which is further used in conjunction with an optical bandpass filter implemented by SBS to achieve the frequency-to-time mapping of microwave signals and the final STFT. By comparing the results with and without optoelectronic feedback, it is found that the time-frequency diagram of the signal under test (SUT) obtained by STFT is clearer and smoother, and the frequency of the SUT measured in each frequency-sweep period is more accurate. The measurement error is reduced by around 50% under the optimal filter bandwidth.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"36 24\",\"pages\":\"1421-1424\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10735199/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10735199/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于稳定的周期一(P1)非线性激光动力学和受激布里渊散射(SBS)的微波光子短时傅里叶变换(STFT)系统。通过使用光电反馈回路,稳定了由 P1 非线性激光动力学产生的频率扫描光信号,并将其与 SBS 实现的光带通滤波器结合使用,实现了微波信号的频率-时间映射和最终的 STFT。通过比较有光电反馈和无光电反馈的结果,可以发现 STFT 得到的被测信号(SUT)时频图更加清晰、平滑,每个扫频周期内测得的被测信号频率更加准确。在最佳滤波器带宽下,测量误差减少了约 50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STFT Based on Stabilized Period-One Nonlinear Laser Dynamics and Stimulated Brillouin Scattering
A microwave photonic short-time Fourier transform (STFT) system based on stabilized period-one (P1) nonlinear laser dynamics and stimulated Brillouin scattering (SBS) is proposed. By using an optoelectronic feedback loop, the frequency-sweep optical signal generated by the P1 nonlinear laser dynamics is stabilized, which is further used in conjunction with an optical bandpass filter implemented by SBS to achieve the frequency-to-time mapping of microwave signals and the final STFT. By comparing the results with and without optoelectronic feedback, it is found that the time-frequency diagram of the signal under test (SUT) obtained by STFT is clearer and smoother, and the frequency of the SUT measured in each frequency-sweep period is more accurate. The measurement error is reduced by around 50% under the optimal filter bandwidth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
期刊最新文献
High Power Multi-Junction 808 nm Vertical Cavity Surface Emitting Lasers With High Efficiency Externally Coated Dual-Channel Photonic Crystal Fiber for Bio-Temperature Sensing Optimized Photonic-Electronic Co-Design for Hybrid Integrated Silicon-Based Optical Transmitters A Large-Signal SPICE Model for VCSEL Based on Piece-Wise Linear RLC Elements Demonstration of Optically Connected Disaggregated Memory With Hitless Wavelength-Selective Switch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1