DifSG2-CCL:基于水体特殊光学特性的图像重构

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Photonics Technology Letters Pub Date : 2024-10-23 DOI:10.1109/LPT.2024.3484656
Feifan Yao;Huiying Zhang;Yifei Gong
{"title":"DifSG2-CCL:基于水体特殊光学特性的图像重构","authors":"Feifan Yao;Huiying Zhang;Yifei Gong","doi":"10.1109/LPT.2024.3484656","DOIUrl":null,"url":null,"abstract":"Addressing the unique optical properties of water in underwater images, this letter introduces the DifSG2-CCL model for generating images in complex underwater environments, aiming to mitigate the effects of water quality factors on the generated images. This letter proposes U-CCL (Underwater Cycle Consistency Loss) in the generator loss, allowing the generator to preserve real image information during conversion by reflecting the shot to prevent information loss. Consequently, the generated image is not only more realistic, but also highly consistent with the real image in content. Additionally, this letter utilizes the publicly available 9.235k Sea Anemone Dataset (SA Dataset) with a resolution of \n<inline-formula> <tex-math>$256\\times 256$ </tex-math></inline-formula>\n for training. Experimental results indicate that assigning a weight of 1 to DiffSG2-CCL achieves the best training effect, reducing the FID value to 8.97, while significantly improving the detail and texture of the generated images, approaching aesthetic vision. Thus, this method effectively mitigates the special optical properties of water bodies and offers innovative approaches for generating images in complex underwater environments. The experimental code with pre-trained models will be published shortly at \n<uri>https://github.com/yff0428/DifSG2-CCL/tree/master</uri>\n.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 24","pages":"1417-1420"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DifSG2-CCL: Image Reconstruction Based on Special Optical Properties of Water Body\",\"authors\":\"Feifan Yao;Huiying Zhang;Yifei Gong\",\"doi\":\"10.1109/LPT.2024.3484656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing the unique optical properties of water in underwater images, this letter introduces the DifSG2-CCL model for generating images in complex underwater environments, aiming to mitigate the effects of water quality factors on the generated images. This letter proposes U-CCL (Underwater Cycle Consistency Loss) in the generator loss, allowing the generator to preserve real image information during conversion by reflecting the shot to prevent information loss. Consequently, the generated image is not only more realistic, but also highly consistent with the real image in content. Additionally, this letter utilizes the publicly available 9.235k Sea Anemone Dataset (SA Dataset) with a resolution of \\n<inline-formula> <tex-math>$256\\\\times 256$ </tex-math></inline-formula>\\n for training. Experimental results indicate that assigning a weight of 1 to DiffSG2-CCL achieves the best training effect, reducing the FID value to 8.97, while significantly improving the detail and texture of the generated images, approaching aesthetic vision. Thus, this method effectively mitigates the special optical properties of water bodies and offers innovative approaches for generating images in complex underwater environments. The experimental code with pre-trained models will be published shortly at \\n<uri>https://github.com/yff0428/DifSG2-CCL/tree/master</uri>\\n.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"36 24\",\"pages\":\"1417-1420\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10731901/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10731901/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

针对水下图像中水的独特光学特性,本文介绍了用于生成复杂水下环境图像的 DifSG2-CCL 模型,旨在减轻水质因素对生成图像的影响。本文提出了生成器损耗中的 U-CCL(水下周期一致性损耗),使生成器在转换过程中通过反射镜头保留真实图像信息,防止信息丢失。因此,生成的图像不仅更加逼真,而且在内容上与真实图像高度一致。此外,这封信还使用了公开的 9.235k 海葵数据集(SA Dataset)进行训练,该数据集的分辨率为 256times 256$。实验结果表明,给 DiffSG2-CCL 赋予 1 的权重能达到最佳训练效果,将 FID 值降至 8.97,同时显著改善生成图像的细节和质感,接近审美视觉。因此,这种方法能有效缓解水体的特殊光学特性,为生成复杂水下环境的图像提供了创新方法。带有预训练模型的实验代码不久将发布在 https://github.com/yff0428/DifSG2-CCL/tree/master 网站上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DifSG2-CCL: Image Reconstruction Based on Special Optical Properties of Water Body
Addressing the unique optical properties of water in underwater images, this letter introduces the DifSG2-CCL model for generating images in complex underwater environments, aiming to mitigate the effects of water quality factors on the generated images. This letter proposes U-CCL (Underwater Cycle Consistency Loss) in the generator loss, allowing the generator to preserve real image information during conversion by reflecting the shot to prevent information loss. Consequently, the generated image is not only more realistic, but also highly consistent with the real image in content. Additionally, this letter utilizes the publicly available 9.235k Sea Anemone Dataset (SA Dataset) with a resolution of $256\times 256$ for training. Experimental results indicate that assigning a weight of 1 to DiffSG2-CCL achieves the best training effect, reducing the FID value to 8.97, while significantly improving the detail and texture of the generated images, approaching aesthetic vision. Thus, this method effectively mitigates the special optical properties of water bodies and offers innovative approaches for generating images in complex underwater environments. The experimental code with pre-trained models will be published shortly at https://github.com/yff0428/DifSG2-CCL/tree/master .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
期刊最新文献
High Power Multi-Junction 808 nm Vertical Cavity Surface Emitting Lasers With High Efficiency Externally Coated Dual-Channel Photonic Crystal Fiber for Bio-Temperature Sensing Optimized Photonic-Electronic Co-Design for Hybrid Integrated Silicon-Based Optical Transmitters A Large-Signal SPICE Model for VCSEL Based on Piece-Wise Linear RLC Elements Demonstration of Optically Connected Disaggregated Memory With Hitless Wavelength-Selective Switch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1