{"title":"通过提高发射寿命和互补短波长光吸收† 实现红色荧光材料辅助的高性能三元有机太阳能电池","authors":"Yingze Lei, Zhiyong Liu and Han Zhang","doi":"10.1039/D4TC02796E","DOIUrl":null,"url":null,"abstract":"<p >The energy transfer from a third component material to donor materials and the broadening of the absorption spectrum of the photoactive layer both play an important role in the exciton dissociation process and enhancing photon utilization. Suppressing the charge recombination process and enhancing charge carrier transport are promising strategies to improve the photovoltaic performance of organic solar cells (OSCs). In this manuscript, an effective method is presented using the red fluorescence material 4-(dicyanomethylene)-2-<em>tert</em>-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4<em>H</em>-pyran (DCJTB) as the third component and PM6:Y6 as the host photoactive layer. The photoluminescence spectrum of DCJTB is fully covered by the absorption spectrum of PM6, indicating that the energy from DCJTB can transfer to PM6, which prolongs the exciton lifetime and ensures sufficient time for diffusion and dissociation. The efficient short wavelength light absorption capability of DCJTB is beneficial to enhance the photon utilization efficiency. In addition, a small amount of DCJTB as a third component material can improve the crystallinity of a film and provide more efficient charge transport channels. These results suggest that the ternary strategy with the red fluorescence material DCJTB as the third component provides a new design idea to realize high-performance OSCs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High performance ternary organic solar cells assisted by red fluorescent materials through improved emission lifetime and complementary short wavelength light absorption†\",\"authors\":\"Yingze Lei, Zhiyong Liu and Han Zhang\",\"doi\":\"10.1039/D4TC02796E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The energy transfer from a third component material to donor materials and the broadening of the absorption spectrum of the photoactive layer both play an important role in the exciton dissociation process and enhancing photon utilization. Suppressing the charge recombination process and enhancing charge carrier transport are promising strategies to improve the photovoltaic performance of organic solar cells (OSCs). In this manuscript, an effective method is presented using the red fluorescence material 4-(dicyanomethylene)-2-<em>tert</em>-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4<em>H</em>-pyran (DCJTB) as the third component and PM6:Y6 as the host photoactive layer. The photoluminescence spectrum of DCJTB is fully covered by the absorption spectrum of PM6, indicating that the energy from DCJTB can transfer to PM6, which prolongs the exciton lifetime and ensures sufficient time for diffusion and dissociation. The efficient short wavelength light absorption capability of DCJTB is beneficial to enhance the photon utilization efficiency. In addition, a small amount of DCJTB as a third component material can improve the crystallinity of a film and provide more efficient charge transport channels. These results suggest that the ternary strategy with the red fluorescence material DCJTB as the third component provides a new design idea to realize high-performance OSCs.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02796e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02796e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High performance ternary organic solar cells assisted by red fluorescent materials through improved emission lifetime and complementary short wavelength light absorption†
The energy transfer from a third component material to donor materials and the broadening of the absorption spectrum of the photoactive layer both play an important role in the exciton dissociation process and enhancing photon utilization. Suppressing the charge recombination process and enhancing charge carrier transport are promising strategies to improve the photovoltaic performance of organic solar cells (OSCs). In this manuscript, an effective method is presented using the red fluorescence material 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) as the third component and PM6:Y6 as the host photoactive layer. The photoluminescence spectrum of DCJTB is fully covered by the absorption spectrum of PM6, indicating that the energy from DCJTB can transfer to PM6, which prolongs the exciton lifetime and ensures sufficient time for diffusion and dissociation. The efficient short wavelength light absorption capability of DCJTB is beneficial to enhance the photon utilization efficiency. In addition, a small amount of DCJTB as a third component material can improve the crystallinity of a film and provide more efficient charge transport channels. These results suggest that the ternary strategy with the red fluorescence material DCJTB as the third component provides a new design idea to realize high-performance OSCs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.