{"title":"利用哈里斯-哈克斯优化器增强注意力驱动的混合深度学习,用于苹果机械损伤检测","authors":"Ling Ma, Xincan Wu, Ting Zhu, Yingxinxin Huang, Xinnan Chen, Jingyuan Ning, Yuqi Sun, Guohua Hui","doi":"10.1007/s11694-024-02897-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses the challenges of high costs and lengthy detection times associated with non-destructive testing of mechanical damage in apples. A novel approach combining deep learning and the Harris hawks optimizer (HHO) is proposed to tackle this. The study employs near-infrared relaxation spectroscopy to analyze apples’ spectral characteristics in different conditions. These spectral data are then processed by a residual network (ResNet) to extract relevant features. The extracted features are subsequently fed into a fusion model comprising long short-term memory (LSTM) and an Attention mechanism, with the model’s output determined by the Softmax function. The HHO is utilized to optimize parameter combinations for the search models, and its performance is compared against the gray wolf optimization algorithm whale optimization algorithm (WOA), and dwarf mongoose optimization algorithm. Moreover, the study introduces the Multiple Measurement Classification Recognition (MMCR) method to enhance accuracy. Comparative analyses demonstrate that the HHO-ResNet-LSTM (Attention)-MMCR model effectively captures intricate nonlinear relationships, resulting in an impressive accuracy increase to 98%. This innovative model offers a promising avenue for non-destructive fruit inspection, contributing to the advancement of inspection methodologies.</p></div>","PeriodicalId":631,"journal":{"name":"Journal of Food Measurement and Characterization","volume":"18 11","pages":"9508 - 9518"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced attention-driven hybrid deep learning with harris hawks optimizer for apple mechanical damage detection\",\"authors\":\"Ling Ma, Xincan Wu, Ting Zhu, Yingxinxin Huang, Xinnan Chen, Jingyuan Ning, Yuqi Sun, Guohua Hui\",\"doi\":\"10.1007/s11694-024-02897-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study addresses the challenges of high costs and lengthy detection times associated with non-destructive testing of mechanical damage in apples. A novel approach combining deep learning and the Harris hawks optimizer (HHO) is proposed to tackle this. The study employs near-infrared relaxation spectroscopy to analyze apples’ spectral characteristics in different conditions. These spectral data are then processed by a residual network (ResNet) to extract relevant features. The extracted features are subsequently fed into a fusion model comprising long short-term memory (LSTM) and an Attention mechanism, with the model’s output determined by the Softmax function. The HHO is utilized to optimize parameter combinations for the search models, and its performance is compared against the gray wolf optimization algorithm whale optimization algorithm (WOA), and dwarf mongoose optimization algorithm. Moreover, the study introduces the Multiple Measurement Classification Recognition (MMCR) method to enhance accuracy. Comparative analyses demonstrate that the HHO-ResNet-LSTM (Attention)-MMCR model effectively captures intricate nonlinear relationships, resulting in an impressive accuracy increase to 98%. This innovative model offers a promising avenue for non-destructive fruit inspection, contributing to the advancement of inspection methodologies.</p></div>\",\"PeriodicalId\":631,\"journal\":{\"name\":\"Journal of Food Measurement and Characterization\",\"volume\":\"18 11\",\"pages\":\"9508 - 9518\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Measurement and Characterization\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11694-024-02897-w\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Measurement and Characterization","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11694-024-02897-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Enhanced attention-driven hybrid deep learning with harris hawks optimizer for apple mechanical damage detection
This study addresses the challenges of high costs and lengthy detection times associated with non-destructive testing of mechanical damage in apples. A novel approach combining deep learning and the Harris hawks optimizer (HHO) is proposed to tackle this. The study employs near-infrared relaxation spectroscopy to analyze apples’ spectral characteristics in different conditions. These spectral data are then processed by a residual network (ResNet) to extract relevant features. The extracted features are subsequently fed into a fusion model comprising long short-term memory (LSTM) and an Attention mechanism, with the model’s output determined by the Softmax function. The HHO is utilized to optimize parameter combinations for the search models, and its performance is compared against the gray wolf optimization algorithm whale optimization algorithm (WOA), and dwarf mongoose optimization algorithm. Moreover, the study introduces the Multiple Measurement Classification Recognition (MMCR) method to enhance accuracy. Comparative analyses demonstrate that the HHO-ResNet-LSTM (Attention)-MMCR model effectively captures intricate nonlinear relationships, resulting in an impressive accuracy increase to 98%. This innovative model offers a promising avenue for non-destructive fruit inspection, contributing to the advancement of inspection methodologies.
期刊介绍:
This interdisciplinary journal publishes new measurement results, characteristic properties, differentiating patterns, measurement methods and procedures for such purposes as food process innovation, product development, quality control, and safety assurance.
The journal encompasses all topics related to food property measurement and characterization, including all types of measured properties of food and food materials, features and patterns, measurement principles and techniques, development and evaluation of technologies, novel uses and applications, and industrial implementation of systems and procedures.