{"title":"具有大延迟带宽积的伪ospin 偏振慢光波导","authors":"Fu-Long Shi, Xiao-Dong Chen, Wen-Jie Chen, Jian-Wen Dong","doi":"10.1038/s42005-024-01853-w","DOIUrl":null,"url":null,"abstract":"Delay-bandwidth product (DBP) is a key metric in slow light waveguides, requiring a balance between a large group index and broad bandwidth—two parameters that often involve a trade-off. Here, we propose and demonstrate a slow light waveguide with large DBP using a pseudospin-polarized transverse electromagnetic mode. This waveguide features a folded edge configuration that supports a 200% relative bandwidth from quasistatic limit (zero frequency) and an arbitrarily large group index. Owing to the pseudospin-polarized design, the dense folding would not introduce backscattering and the associated group velocity dispersion (GVD). The resulting gapless linear dispersion and pulse transmission behavior in folded edge waveguide are observed in microwave experiments. Our scheme provides a way to overcome the trade-off between group index and working bandwidth in slow light waveguide, which has potential applications in broadband optical buffering, light-matter interaction enhancement, terahertz radiation source and time domain processing. Delay-bandwidth product (DBP), which require a large group index and a wide bandwidth, is an important indicator in slow light waveguides. This work relaxes the trade-off between group velocity and working bandwidth in 200% relative bandwidth, and realizes a pseudospin-polarized slow-light waveguide with large DBP and low group velocity dispersion.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-7"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01853-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Pseudospin-polarized slow light waveguides with large delay-bandwidth product\",\"authors\":\"Fu-Long Shi, Xiao-Dong Chen, Wen-Jie Chen, Jian-Wen Dong\",\"doi\":\"10.1038/s42005-024-01853-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Delay-bandwidth product (DBP) is a key metric in slow light waveguides, requiring a balance between a large group index and broad bandwidth—two parameters that often involve a trade-off. Here, we propose and demonstrate a slow light waveguide with large DBP using a pseudospin-polarized transverse electromagnetic mode. This waveguide features a folded edge configuration that supports a 200% relative bandwidth from quasistatic limit (zero frequency) and an arbitrarily large group index. Owing to the pseudospin-polarized design, the dense folding would not introduce backscattering and the associated group velocity dispersion (GVD). The resulting gapless linear dispersion and pulse transmission behavior in folded edge waveguide are observed in microwave experiments. Our scheme provides a way to overcome the trade-off between group index and working bandwidth in slow light waveguide, which has potential applications in broadband optical buffering, light-matter interaction enhancement, terahertz radiation source and time domain processing. Delay-bandwidth product (DBP), which require a large group index and a wide bandwidth, is an important indicator in slow light waveguides. This work relaxes the trade-off between group velocity and working bandwidth in 200% relative bandwidth, and realizes a pseudospin-polarized slow-light waveguide with large DBP and low group velocity dispersion.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01853-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01853-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01853-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Pseudospin-polarized slow light waveguides with large delay-bandwidth product
Delay-bandwidth product (DBP) is a key metric in slow light waveguides, requiring a balance between a large group index and broad bandwidth—two parameters that often involve a trade-off. Here, we propose and demonstrate a slow light waveguide with large DBP using a pseudospin-polarized transverse electromagnetic mode. This waveguide features a folded edge configuration that supports a 200% relative bandwidth from quasistatic limit (zero frequency) and an arbitrarily large group index. Owing to the pseudospin-polarized design, the dense folding would not introduce backscattering and the associated group velocity dispersion (GVD). The resulting gapless linear dispersion and pulse transmission behavior in folded edge waveguide are observed in microwave experiments. Our scheme provides a way to overcome the trade-off between group index and working bandwidth in slow light waveguide, which has potential applications in broadband optical buffering, light-matter interaction enhancement, terahertz radiation source and time domain processing. Delay-bandwidth product (DBP), which require a large group index and a wide bandwidth, is an important indicator in slow light waveguides. This work relaxes the trade-off between group velocity and working bandwidth in 200% relative bandwidth, and realizes a pseudospin-polarized slow-light waveguide with large DBP and low group velocity dispersion.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.