Maximilian Lechner, Anna Kollenda, Konrad Bendzuck, Julian K. Burmeister, Kashfia Mahin, Josef Keilhofer, Lukas Kemmer, Maximilian J. Blaschke, Gunther Friedl, Ruediger Daub, Arno Kwade
{"title":"现代锂离子电池电池 GWh 级生产的成本建模","authors":"Maximilian Lechner, Anna Kollenda, Konrad Bendzuck, Julian K. Burmeister, Kashfia Mahin, Josef Keilhofer, Lukas Kemmer, Maximilian J. Blaschke, Gunther Friedl, Ruediger Daub, Arno Kwade","doi":"10.1038/s44172-024-00306-0","DOIUrl":null,"url":null,"abstract":"Battery production cost models are critical for evaluating the cost competitiveness of different cell geometries, chemistries, and production processes. To address this need, we present a detailed bottom-up approach for calculating the full cost, marginal cost, and levelized cost of various battery production methods. Our approach ensures comparability across research fields and industries, reflecting capital and imputed interest costs. We showcase the model with case studies of a prismatic PHEV2 hardcase cell and a cylindrical 4680 cell in four different chemistries. Our publicly available browser-based modular tool incorporates up-to-date parameters derived from literature and expert interviews. This work enables researchers to quickly assess the production cost implications of new battery production processes and technologies, ultimately advancing the goal of reducing the cost of electrified mobility. Battery production cost models are critical for evaluating cost competitiveness but frequently lack transparency and standardization. A bottom-up approach for calculating the full cost, marginal cost, and levelized cost of various battery production methods is proposed, enriched by a browser-based modular user tool.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00306-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Cost modeling for the GWh-scale production of modern lithium-ion battery cells\",\"authors\":\"Maximilian Lechner, Anna Kollenda, Konrad Bendzuck, Julian K. Burmeister, Kashfia Mahin, Josef Keilhofer, Lukas Kemmer, Maximilian J. Blaschke, Gunther Friedl, Ruediger Daub, Arno Kwade\",\"doi\":\"10.1038/s44172-024-00306-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Battery production cost models are critical for evaluating the cost competitiveness of different cell geometries, chemistries, and production processes. To address this need, we present a detailed bottom-up approach for calculating the full cost, marginal cost, and levelized cost of various battery production methods. Our approach ensures comparability across research fields and industries, reflecting capital and imputed interest costs. We showcase the model with case studies of a prismatic PHEV2 hardcase cell and a cylindrical 4680 cell in four different chemistries. Our publicly available browser-based modular tool incorporates up-to-date parameters derived from literature and expert interviews. This work enables researchers to quickly assess the production cost implications of new battery production processes and technologies, ultimately advancing the goal of reducing the cost of electrified mobility. Battery production cost models are critical for evaluating cost competitiveness but frequently lack transparency and standardization. A bottom-up approach for calculating the full cost, marginal cost, and levelized cost of various battery production methods is proposed, enriched by a browser-based modular user tool.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00306-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00306-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00306-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost modeling for the GWh-scale production of modern lithium-ion battery cells
Battery production cost models are critical for evaluating the cost competitiveness of different cell geometries, chemistries, and production processes. To address this need, we present a detailed bottom-up approach for calculating the full cost, marginal cost, and levelized cost of various battery production methods. Our approach ensures comparability across research fields and industries, reflecting capital and imputed interest costs. We showcase the model with case studies of a prismatic PHEV2 hardcase cell and a cylindrical 4680 cell in four different chemistries. Our publicly available browser-based modular tool incorporates up-to-date parameters derived from literature and expert interviews. This work enables researchers to quickly assess the production cost implications of new battery production processes and technologies, ultimately advancing the goal of reducing the cost of electrified mobility. Battery production cost models are critical for evaluating cost competitiveness but frequently lack transparency and standardization. A bottom-up approach for calculating the full cost, marginal cost, and levelized cost of various battery production methods is proposed, enriched by a browser-based modular user tool.