Xiang-Rui Liu, Ming-Yuan Zhu, Yuanwen Feng, Meng Zeng, Xiao-Ming Ma, Yu-Jie Hao, Yue Dai, Rong-Hao Luo, Yu-Peng Zhu, Kohei Yamagami, Yi Liu, Shengtao Cui, Zhe Sun, Jia-Yu Liu, Yu Huang, Zhengtai Liu, Mao Ye, Dawei Shen, Bing Li, Chang Liu
{"title":"观测受阻原子绝缘体候选物质 NiP2 的浮面状态","authors":"Xiang-Rui Liu, Ming-Yuan Zhu, Yuanwen Feng, Meng Zeng, Xiao-Ming Ma, Yu-Jie Hao, Yue Dai, Rong-Hao Luo, Yu-Peng Zhu, Kohei Yamagami, Yi Liu, Shengtao Cui, Zhe Sun, Jia-Yu Liu, Yu Huang, Zhengtai Liu, Mao Ye, Dawei Shen, Bing Li, Chang Liu","doi":"10.1038/s41535-024-00699-3","DOIUrl":null,"url":null,"abstract":"<p>Obstructed atomic insulator is recently proposed as an unconventional material, in which electric charge centers localized at sites away from the atoms. A half-filling surface state would emerge at specific interfaces cutting through these charge centers and avoid intersecting any atoms. In this article, we utilized photoemission spectroscopy and density functional theory calculations to study one of the obstructed atomic insulator candidates, NiP<sub>2</sub>. A floating surface state with large effective mass that is close to the Fermi level and isolated from all bulk states is resolved on the (100) cleavage plane, implying better catalytic activity in this plane than the previously studied surfaces. Density functional theory calculation results elucidate that this floating surface state is originated from the obstructed Wannier charge centers, albeit underwent surface reconstruction. Our findings not only shed lights on the study of obstructed atomic insulators, but also provide possible route for development of new catalysts.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"4 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of floating surface state in obstructed atomic insulator candidate NiP2\",\"authors\":\"Xiang-Rui Liu, Ming-Yuan Zhu, Yuanwen Feng, Meng Zeng, Xiao-Ming Ma, Yu-Jie Hao, Yue Dai, Rong-Hao Luo, Yu-Peng Zhu, Kohei Yamagami, Yi Liu, Shengtao Cui, Zhe Sun, Jia-Yu Liu, Yu Huang, Zhengtai Liu, Mao Ye, Dawei Shen, Bing Li, Chang Liu\",\"doi\":\"10.1038/s41535-024-00699-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Obstructed atomic insulator is recently proposed as an unconventional material, in which electric charge centers localized at sites away from the atoms. A half-filling surface state would emerge at specific interfaces cutting through these charge centers and avoid intersecting any atoms. In this article, we utilized photoemission spectroscopy and density functional theory calculations to study one of the obstructed atomic insulator candidates, NiP<sub>2</sub>. A floating surface state with large effective mass that is close to the Fermi level and isolated from all bulk states is resolved on the (100) cleavage plane, implying better catalytic activity in this plane than the previously studied surfaces. Density functional theory calculation results elucidate that this floating surface state is originated from the obstructed Wannier charge centers, albeit underwent surface reconstruction. Our findings not only shed lights on the study of obstructed atomic insulators, but also provide possible route for development of new catalysts.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00699-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00699-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Observation of floating surface state in obstructed atomic insulator candidate NiP2
Obstructed atomic insulator is recently proposed as an unconventional material, in which electric charge centers localized at sites away from the atoms. A half-filling surface state would emerge at specific interfaces cutting through these charge centers and avoid intersecting any atoms. In this article, we utilized photoemission spectroscopy and density functional theory calculations to study one of the obstructed atomic insulator candidates, NiP2. A floating surface state with large effective mass that is close to the Fermi level and isolated from all bulk states is resolved on the (100) cleavage plane, implying better catalytic activity in this plane than the previously studied surfaces. Density functional theory calculation results elucidate that this floating surface state is originated from the obstructed Wannier charge centers, albeit underwent surface reconstruction. Our findings not only shed lights on the study of obstructed atomic insulators, but also provide possible route for development of new catalysts.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.