利用基于 PMN-PT/Ni-Mn-In 的柔性压电纳米发电机获取机械能和磁能

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-11-03 DOI:10.1016/j.nanoen.2024.110441
Satyam Shankhdhar, Diksha Arora, Habeebur Rahman, Rajesh Kumar, Bhanu Ranjan, Kumar Kaushlendra, Davinder Kaur
{"title":"利用基于 PMN-PT/Ni-Mn-In 的柔性压电纳米发电机获取机械能和磁能","authors":"Satyam Shankhdhar, Diksha Arora, Habeebur Rahman, Rajesh Kumar, Bhanu Ranjan, Kumar Kaushlendra, Davinder Kaur","doi":"10.1016/j.nanoen.2024.110441","DOIUrl":null,"url":null,"abstract":"Multifunctional piezoelectric nanogenerators (PENG) hold significant potential in developing smart sensing technologies for the military, healthcare, and industrial sectors. Here, we present the efficient energy harvesting from mechanical and magnetic stimuli in 0.67Pb (Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-0.33PbTiO<sub>3</sub> (PMN-PT) / Ni<sub>50</sub>Mn<sub>35</sub>In<sub>15</sub> (Ni-Mn-In)-based PENG fabricated on a flexible nickel substrate using the DC/RF magnetron sputtering technique. The performance of the device has been assessed by imparting forces in the range of 0.12 to 0.61<!-- --> <!-- -->N using various weights, finger tapping, bending, and magnetic fields. The device generates the maximum open circuit voltage (V<sub>oc</sub>) of 9.3<!-- --> <!-- -->V and 6<!-- --> <!-- -->V with 0.61<!-- --> <!-- -->N of force and finger tapping, respectively. The corresponding short circuit current (I<sub>sc</sub>) has been obtained as 1.33<!-- --> <!-- -->µA (0.61<!-- --> <!-- -->N) and 0.9<!-- --> <!-- -->µA (finger tapping). The device shows a maximum V<sub>oc</sub> of 10.6<!-- --> <!-- -->V and I<sub>sc</sub> of 1.51<!-- --> <!-- -->µA at the bending angle of 120<sup>°</sup>. Furthermore, the V<sub>oc</sub> and I<sub>sc</sub> have increased from 0<!-- --> <!-- -->mV and 0<!-- --> <!-- -->nA to 240<!-- --> <!-- -->mV and 35<!-- --> <!-- -->nA under the presence of 0<!-- --> <!-- -->Oe to 500<!-- --> <!-- -->Oe of DC magnetic field, respectively. The fabricated device exhibited a power density of 2.7<!-- --> <!-- -->µW/cm<sup>2</sup> with a high mechanical stability of 2500 cycles. Additionally, LEDs of green, red, yellow, and white color have been illuminated. The receptiveness of the fabricated PENG towards mechanical and magnetic stimuli highlights its potential in areas such as tactile sensing, wearable electronics, human-machine interfaces, and biomedical devices.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing the Mechanical and Magnetic Energy with PMN-PT/Ni-Mn-In-based Flexible Piezoelectric Nanogenerator\",\"authors\":\"Satyam Shankhdhar, Diksha Arora, Habeebur Rahman, Rajesh Kumar, Bhanu Ranjan, Kumar Kaushlendra, Davinder Kaur\",\"doi\":\"10.1016/j.nanoen.2024.110441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multifunctional piezoelectric nanogenerators (PENG) hold significant potential in developing smart sensing technologies for the military, healthcare, and industrial sectors. Here, we present the efficient energy harvesting from mechanical and magnetic stimuli in 0.67Pb (Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-0.33PbTiO<sub>3</sub> (PMN-PT) / Ni<sub>50</sub>Mn<sub>35</sub>In<sub>15</sub> (Ni-Mn-In)-based PENG fabricated on a flexible nickel substrate using the DC/RF magnetron sputtering technique. The performance of the device has been assessed by imparting forces in the range of 0.12 to 0.61<!-- --> <!-- -->N using various weights, finger tapping, bending, and magnetic fields. The device generates the maximum open circuit voltage (V<sub>oc</sub>) of 9.3<!-- --> <!-- -->V and 6<!-- --> <!-- -->V with 0.61<!-- --> <!-- -->N of force and finger tapping, respectively. The corresponding short circuit current (I<sub>sc</sub>) has been obtained as 1.33<!-- --> <!-- -->µA (0.61<!-- --> <!-- -->N) and 0.9<!-- --> <!-- -->µA (finger tapping). The device shows a maximum V<sub>oc</sub> of 10.6<!-- --> <!-- -->V and I<sub>sc</sub> of 1.51<!-- --> <!-- -->µA at the bending angle of 120<sup>°</sup>. Furthermore, the V<sub>oc</sub> and I<sub>sc</sub> have increased from 0<!-- --> <!-- -->mV and 0<!-- --> <!-- -->nA to 240<!-- --> <!-- -->mV and 35<!-- --> <!-- -->nA under the presence of 0<!-- --> <!-- -->Oe to 500<!-- --> <!-- -->Oe of DC magnetic field, respectively. The fabricated device exhibited a power density of 2.7<!-- --> <!-- -->µW/cm<sup>2</sup> with a high mechanical stability of 2500 cycles. Additionally, LEDs of green, red, yellow, and white color have been illuminated. The receptiveness of the fabricated PENG towards mechanical and magnetic stimuli highlights its potential in areas such as tactile sensing, wearable electronics, human-machine interfaces, and biomedical devices.\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nanoen.2024.110441\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110441","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

多功能压电纳米发电机(PENG)在开发军事、医疗保健和工业领域的智能传感技术方面具有巨大潜力。在此,我们介绍了利用直流/射频磁控溅射技术在柔性镍基底上制造的基于 0.67Pb (Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) / Ni50Mn35In15 (Ni-Mn-In) 的压电纳米发电机从机械和磁场刺激中高效采集能量的情况。通过使用各种砝码、手指敲击、弯曲和磁场施加 0.12 至 0.61 N 的力,对该器件的性能进行了评估。在施加 0.61 N 的力和手指敲击的情况下,该装置产生的最大开路电压(Voc)分别为 9.3 V 和 6 V。相应的短路电流(Isc)分别为 1.33 µA(0.61 N)和 0.9 µA(手指敲击)。在弯曲角度为 120° 时,器件显示出 10.6 V 的最大 Voc 和 1.51 µA 的 Isc。此外,在 0 Oe 至 500 Oe 的直流磁场下,Voc 和 Isc 分别从 0 mV 和 0 nA 增加到 240 mV 和 35 nA。所制造的器件功率密度为 2.7 µW/cm2,机械稳定性高达 2500 次循环。此外,绿色、红色、黄色和白色的发光二极管均已点亮。所制造的 PENG 对机械和磁刺激的接受能力突出表明了它在触觉传感、可穿戴电子设备、人机界面和生物医学设备等领域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing the Mechanical and Magnetic Energy with PMN-PT/Ni-Mn-In-based Flexible Piezoelectric Nanogenerator
Multifunctional piezoelectric nanogenerators (PENG) hold significant potential in developing smart sensing technologies for the military, healthcare, and industrial sectors. Here, we present the efficient energy harvesting from mechanical and magnetic stimuli in 0.67Pb (Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) / Ni50Mn35In15 (Ni-Mn-In)-based PENG fabricated on a flexible nickel substrate using the DC/RF magnetron sputtering technique. The performance of the device has been assessed by imparting forces in the range of 0.12 to 0.61 N using various weights, finger tapping, bending, and magnetic fields. The device generates the maximum open circuit voltage (Voc) of 9.3 V and 6 V with 0.61 N of force and finger tapping, respectively. The corresponding short circuit current (Isc) has been obtained as 1.33 µA (0.61 N) and 0.9 µA (finger tapping). The device shows a maximum Voc of 10.6 V and Isc of 1.51 µA at the bending angle of 120°. Furthermore, the Voc and Isc have increased from 0 mV and 0 nA to 240 mV and 35 nA under the presence of 0 Oe to 500 Oe of DC magnetic field, respectively. The fabricated device exhibited a power density of 2.7 µW/cm2 with a high mechanical stability of 2500 cycles. Additionally, LEDs of green, red, yellow, and white color have been illuminated. The receptiveness of the fabricated PENG towards mechanical and magnetic stimuli highlights its potential in areas such as tactile sensing, wearable electronics, human-machine interfaces, and biomedical devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Interface Engineering of Heterostructural Quantum Dots Towards High-Rate and Long-Life Lithium-Sulfur Full Batteries Achieving Stable Lithium Metal Anode via Constructing Lithiophilicity Gradient and Regulating Li3N-Rich SEI Harnessing the Mechanical and Magnetic Energy with PMN-PT/Ni-Mn-In-based Flexible Piezoelectric Nanogenerator Biomass-based shape-stabilized phase change materials for thermal energy storage and multiple energy conversion High-Energy Mn2V2O7//C Asymmetric Supercapacitors in Aqueous/Organic Hybrid Electrolytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1