{"title":"共掺杂 Zr-UiO-66-NH2@ 羧基纤维素纳米晶/PAN 膜用于油/水分离,具有光催化-PMS 协同自清洁和抗菌活性。","authors":"Zhaoxia Chen, Jinjuan Xue, Jiaqian Zhang, Jianan Qu, Kaiwen Huang, Mingxin Wang","doi":"10.1016/j.ijbiomac.2024.137158","DOIUrl":null,"url":null,"abstract":"<p><p>The development of superwetting membranes is a promising approach for separating emulsified oily wastewater. However, challenges such as low flux without external pressure and membrane fouling have hindered membrane performance. Herein, we fabricated a novel nanofibrous membrane by grafting Co-doped Zr-UiO-66-NH<sub>2</sub> (UiO(Zr/Co)) nanoparticles onto carboxylated cellulose nanocrystals (CCNC)-polyacrylonitrile (PAN) mixed matrix electrospinning membrane via chemical bonds through EDC/NHS reaction. CCNC served a dual purpose by enhancing membrane hydrophilicity and providing connection points for UiO(Zr/Co). The as-prepared UiO(Zr/Co)@CCNC/PAN exhibited superhydrophilic/underwater superoleophobic and anti-fouling properties. The membrane demonstrated excellent demulsification and gravity-driven separation capabilities for various oil-in-water emulsions, with superior permeation flux (1588-2557 L m<sup>-2</sup> h<sup>-1</sup>) and separation efficiency (above 99 %). Furthermore, UiO (Zr/Co)@CCNC/PAN could activate peroxomonosulfate (PMS) under visible light to remove both high viscous crude oil-fouling and bio-fouling, exhibiting impressive photocatalytic self-cleaning and antibacterial activity. The generation of reactive radicals (O<sub>2</sub><sup>-</sup>, OH and SO<sub>4</sub><sup>-</sup>) and non-radical (<sup>1</sup>O<sub>2</sub>) species in UiO(Zr/Co)@CCNC/PAN+PMS system through multiple pathways was confirmed. Additionally, the band structure of UiO(Zr/Co) and synergistic photocatalytic-PMS activation mechanism were investigated. This work provides new insights into the design and fabrication of MOF modified superwetting nanofibrous membrane with inherent bonding, high permeation flux, anti-fouling and self-cleaning properties.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-doped Zr-UiO-66-NH<sub>2</sub>@carboxylated cellulose nanocrystals/PAN membrane for oil/water separation with photocatalysis-PMS synergistic self-cleaning and antibacterial activity.\",\"authors\":\"Zhaoxia Chen, Jinjuan Xue, Jiaqian Zhang, Jianan Qu, Kaiwen Huang, Mingxin Wang\",\"doi\":\"10.1016/j.ijbiomac.2024.137158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of superwetting membranes is a promising approach for separating emulsified oily wastewater. However, challenges such as low flux without external pressure and membrane fouling have hindered membrane performance. Herein, we fabricated a novel nanofibrous membrane by grafting Co-doped Zr-UiO-66-NH<sub>2</sub> (UiO(Zr/Co)) nanoparticles onto carboxylated cellulose nanocrystals (CCNC)-polyacrylonitrile (PAN) mixed matrix electrospinning membrane via chemical bonds through EDC/NHS reaction. CCNC served a dual purpose by enhancing membrane hydrophilicity and providing connection points for UiO(Zr/Co). The as-prepared UiO(Zr/Co)@CCNC/PAN exhibited superhydrophilic/underwater superoleophobic and anti-fouling properties. The membrane demonstrated excellent demulsification and gravity-driven separation capabilities for various oil-in-water emulsions, with superior permeation flux (1588-2557 L m<sup>-2</sup> h<sup>-1</sup>) and separation efficiency (above 99 %). Furthermore, UiO (Zr/Co)@CCNC/PAN could activate peroxomonosulfate (PMS) under visible light to remove both high viscous crude oil-fouling and bio-fouling, exhibiting impressive photocatalytic self-cleaning and antibacterial activity. The generation of reactive radicals (O<sub>2</sub><sup>-</sup>, OH and SO<sub>4</sub><sup>-</sup>) and non-radical (<sup>1</sup>O<sub>2</sub>) species in UiO(Zr/Co)@CCNC/PAN+PMS system through multiple pathways was confirmed. Additionally, the band structure of UiO(Zr/Co) and synergistic photocatalytic-PMS activation mechanism were investigated. This work provides new insights into the design and fabrication of MOF modified superwetting nanofibrous membrane with inherent bonding, high permeation flux, anti-fouling and self-cleaning properties.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137158\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137158","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Co-doped Zr-UiO-66-NH2@carboxylated cellulose nanocrystals/PAN membrane for oil/water separation with photocatalysis-PMS synergistic self-cleaning and antibacterial activity.
The development of superwetting membranes is a promising approach for separating emulsified oily wastewater. However, challenges such as low flux without external pressure and membrane fouling have hindered membrane performance. Herein, we fabricated a novel nanofibrous membrane by grafting Co-doped Zr-UiO-66-NH2 (UiO(Zr/Co)) nanoparticles onto carboxylated cellulose nanocrystals (CCNC)-polyacrylonitrile (PAN) mixed matrix electrospinning membrane via chemical bonds through EDC/NHS reaction. CCNC served a dual purpose by enhancing membrane hydrophilicity and providing connection points for UiO(Zr/Co). The as-prepared UiO(Zr/Co)@CCNC/PAN exhibited superhydrophilic/underwater superoleophobic and anti-fouling properties. The membrane demonstrated excellent demulsification and gravity-driven separation capabilities for various oil-in-water emulsions, with superior permeation flux (1588-2557 L m-2 h-1) and separation efficiency (above 99 %). Furthermore, UiO (Zr/Co)@CCNC/PAN could activate peroxomonosulfate (PMS) under visible light to remove both high viscous crude oil-fouling and bio-fouling, exhibiting impressive photocatalytic self-cleaning and antibacterial activity. The generation of reactive radicals (O2-, OH and SO4-) and non-radical (1O2) species in UiO(Zr/Co)@CCNC/PAN+PMS system through multiple pathways was confirmed. Additionally, the band structure of UiO(Zr/Co) and synergistic photocatalytic-PMS activation mechanism were investigated. This work provides new insights into the design and fabrication of MOF modified superwetting nanofibrous membrane with inherent bonding, high permeation flux, anti-fouling and self-cleaning properties.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.