Rocío Sayago-Carro, Irene Barba-Nieto, Natividad Gómez-Cerezo, José A Rodriguez, Marcos Fernández-García, Anna Kubacka
{"title":"优化材料,提高二氧化碳的利用率:调整 In2O3 基光热催化剂上的钴-钴相互作用。","authors":"Rocío Sayago-Carro, Irene Barba-Nieto, Natividad Gómez-Cerezo, José A Rodriguez, Marcos Fernández-García, Anna Kubacka","doi":"10.1021/acsami.4c14280","DOIUrl":null,"url":null,"abstract":"<p><p>The valorization of CO<sub>2</sub> is an important challenge within the current panorama, since this molecule is probably the main contributor to climate change. In this study, the synthesis of materials based on a nanostructured batonnet-type indium oxide is carried out. In them, different amounts of Co are introduced, varying between 2 and 8% mol. It is verified that the most active sample in the transformation of carbon dioxide to carbon monoxide contains 6 mol %. of Co. This sample's activity under dual excitation exceeds the thermal counterpart by more than 30%. After carrying out a complete physical and chemical characterization with the help of X-ray absorption spectroscopy and other techniques, it is shown that catalysts with amounts of cobalt equal to or below 4 mol % contain isolated single-atom species, while those with higher amounts of metal display a Co-Co interaction which triggers the evolution of the samples under reaction conditions. The optimum control of this Co-Co interaction and the nature of the final cobalt-containing species determine dual photothermal catalytic properties. This work establishes a structure-activity relationship to interpret the catalytic behavior of highly dispersed subnanometric cobalt species, and thus an avenue to optimize the photothermal valorization of carbon dioxide.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Materials to Boost the Valorization of CO<sub>2</sub>: Tuning Cobalt-Cobalt Interactions on In<sub>2</sub>O<sub>3</sub>-Based Photothermal Catalysts.\",\"authors\":\"Rocío Sayago-Carro, Irene Barba-Nieto, Natividad Gómez-Cerezo, José A Rodriguez, Marcos Fernández-García, Anna Kubacka\",\"doi\":\"10.1021/acsami.4c14280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The valorization of CO<sub>2</sub> is an important challenge within the current panorama, since this molecule is probably the main contributor to climate change. In this study, the synthesis of materials based on a nanostructured batonnet-type indium oxide is carried out. In them, different amounts of Co are introduced, varying between 2 and 8% mol. It is verified that the most active sample in the transformation of carbon dioxide to carbon monoxide contains 6 mol %. of Co. This sample's activity under dual excitation exceeds the thermal counterpart by more than 30%. After carrying out a complete physical and chemical characterization with the help of X-ray absorption spectroscopy and other techniques, it is shown that catalysts with amounts of cobalt equal to or below 4 mol % contain isolated single-atom species, while those with higher amounts of metal display a Co-Co interaction which triggers the evolution of the samples under reaction conditions. The optimum control of this Co-Co interaction and the nature of the final cobalt-containing species determine dual photothermal catalytic properties. This work establishes a structure-activity relationship to interpret the catalytic behavior of highly dispersed subnanometric cobalt species, and thus an avenue to optimize the photothermal valorization of carbon dioxide.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c14280\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14280","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Optimizing Materials to Boost the Valorization of CO2: Tuning Cobalt-Cobalt Interactions on In2O3-Based Photothermal Catalysts.
The valorization of CO2 is an important challenge within the current panorama, since this molecule is probably the main contributor to climate change. In this study, the synthesis of materials based on a nanostructured batonnet-type indium oxide is carried out. In them, different amounts of Co are introduced, varying between 2 and 8% mol. It is verified that the most active sample in the transformation of carbon dioxide to carbon monoxide contains 6 mol %. of Co. This sample's activity under dual excitation exceeds the thermal counterpart by more than 30%. After carrying out a complete physical and chemical characterization with the help of X-ray absorption spectroscopy and other techniques, it is shown that catalysts with amounts of cobalt equal to or below 4 mol % contain isolated single-atom species, while those with higher amounts of metal display a Co-Co interaction which triggers the evolution of the samples under reaction conditions. The optimum control of this Co-Co interaction and the nature of the final cobalt-containing species determine dual photothermal catalytic properties. This work establishes a structure-activity relationship to interpret the catalytic behavior of highly dispersed subnanometric cobalt species, and thus an avenue to optimize the photothermal valorization of carbon dioxide.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture