Marika Avitabile, Ana Aleksov, C Valeria L Giosafatto, Odile Francesca Restaino, Marija Lesjak, Nemanja Živanović, Loredana Mariniello, Nataša Simin
{"title":"用玫瑰油蒸馏废水中的多酚功能化的果胶基生物塑料具有抗氧化活性。","authors":"Marika Avitabile, Ana Aleksov, C Valeria L Giosafatto, Odile Francesca Restaino, Marija Lesjak, Nemanja Živanović, Loredana Mariniello, Nataša Simin","doi":"10.1021/acs.biomac.4c00944","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the potential of rose aqueous extract (RE), a byproduct of rose essential oil extraction, to enhance the properties of biobased food packaging materials. RE contained a high phenolic content (153 mg of GAE/g of dw), rich in hydroxybenzoic acids and flavonols. The antioxidant potential of RE, assessed by DPPH assay, was evaluated (IC<sub>50</sub> = 2.85 μg/mL). Edible pectin films fortified with RE were prepared, and their mechanical, physical, and chemical characteristics were evaluated. RE addition increased the moisture content from 14 to 28%, while moisture uptake remained stable at around 10%. Zeta potential remained below -30 mV, indicating that particle aggregation and particle size decreased with higher RE concentrations. Scanning electron microscopy showed an improved homogeneity of the films. RE retained its antioxidant properties, enhancing the mechanical resistance of the films and offering protection against oxidative damage and UV radiation. These findings suggest the potential of RE in developing functional, eco-friendly food packaging.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pectin-Based Bioplastics Functionalized with Polyphenols from Rose Oil Distillation Wastewater Exhibit Antioxidant Activity.\",\"authors\":\"Marika Avitabile, Ana Aleksov, C Valeria L Giosafatto, Odile Francesca Restaino, Marija Lesjak, Nemanja Živanović, Loredana Mariniello, Nataša Simin\",\"doi\":\"10.1021/acs.biomac.4c00944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explored the potential of rose aqueous extract (RE), a byproduct of rose essential oil extraction, to enhance the properties of biobased food packaging materials. RE contained a high phenolic content (153 mg of GAE/g of dw), rich in hydroxybenzoic acids and flavonols. The antioxidant potential of RE, assessed by DPPH assay, was evaluated (IC<sub>50</sub> = 2.85 μg/mL). Edible pectin films fortified with RE were prepared, and their mechanical, physical, and chemical characteristics were evaluated. RE addition increased the moisture content from 14 to 28%, while moisture uptake remained stable at around 10%. Zeta potential remained below -30 mV, indicating that particle aggregation and particle size decreased with higher RE concentrations. Scanning electron microscopy showed an improved homogeneity of the films. RE retained its antioxidant properties, enhancing the mechanical resistance of the films and offering protection against oxidative damage and UV radiation. These findings suggest the potential of RE in developing functional, eco-friendly food packaging.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00944\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00944","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了玫瑰水提取物(RE)(玫瑰精油提取的副产品)在提高生物基食品包装材料性能方面的潜力。RE 含有较高的酚类物质含量(153 毫克 GAE/克干重),其中富含羟基苯甲酸和黄酮醇。用 DPPH 法评估了 RE 的抗氧化潜力(IC50 = 2.85 μg/mL)。制备了添加 RE 的食用果胶薄膜,并对其机械、物理和化学特性进行了评估。添加 RE 后,水分含量从 14% 增加到 28%,而吸湿率则稳定在 10% 左右。Zeta 电位保持在 -30 mV 以下,表明随着 RE 浓度的升高,颗粒聚集和粒径减小。扫描电子显微镜显示薄膜的均匀性有所提高。RE 保持了其抗氧化特性,增强了薄膜的机械耐受性,并提供了抗氧化损伤和紫外线辐射的保护。这些研究结果表明了 RE 在开发功能性环保食品包装方面的潜力。
Pectin-Based Bioplastics Functionalized with Polyphenols from Rose Oil Distillation Wastewater Exhibit Antioxidant Activity.
This study explored the potential of rose aqueous extract (RE), a byproduct of rose essential oil extraction, to enhance the properties of biobased food packaging materials. RE contained a high phenolic content (153 mg of GAE/g of dw), rich in hydroxybenzoic acids and flavonols. The antioxidant potential of RE, assessed by DPPH assay, was evaluated (IC50 = 2.85 μg/mL). Edible pectin films fortified with RE were prepared, and their mechanical, physical, and chemical characteristics were evaluated. RE addition increased the moisture content from 14 to 28%, while moisture uptake remained stable at around 10%. Zeta potential remained below -30 mV, indicating that particle aggregation and particle size decreased with higher RE concentrations. Scanning electron microscopy showed an improved homogeneity of the films. RE retained its antioxidant properties, enhancing the mechanical resistance of the films and offering protection against oxidative damage and UV radiation. These findings suggest the potential of RE in developing functional, eco-friendly food packaging.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.