Siliang Jiang, Yongsheng Cui, Bo Wang, Zheng Fu, Caixia Dong
{"title":"肉苁蓉酸性多糖及其对肿瘤相关巨噬细胞极化的影响","authors":"Siliang Jiang, Yongsheng Cui, Bo Wang, Zheng Fu, Caixia Dong","doi":"10.1016/j.ijbiomac.2024.137207","DOIUrl":null,"url":null,"abstract":"<p><p>Three purified polysaccharides, CDAP-1, CDAP-2, and CDAP-3, were prepared from the rhizome of Cistanche deserticola and characterized. Structural analysis revealed that CDAP-1 and CDAP-2 are highly branched RG-I-type polysaccharides with side chains, including arabinans, galactans, and/or AGs, whereas CDAP-3 is a typical HG-type polysaccharide. In vivo tests revealed that treatment with the crude polysaccharide fraction (CDCP) significantly prolonged the survival of H22 tumor-bearing mice and exhibited antitumor effects. In vitro experiments demonstrated that all three polysaccharides could polarize M2-like TAMs toward the M1 phenotype. As a major component of CDCP, CDAP-2 could act on M2 macrophages through the TLR4 receptor-mediated NF-κB signaling pathway. An in vitro cell model verified that CDAP-2 could inhibit cell proliferation by reversing the polarization of M2-like TAMs to the cytotoxic M1 phenotype. Overall, we found that CDCP showed a clear antitumor effect and that its major component, CDAP-2, could reverse the suppressive TAM phenotype in the microenvironment, providing a scientific basis for the clinical application and development of C. deserticola.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acidic polysaccharides from Cistanche deserticola and their effects on the polarization of tumor-associated macrophages.\",\"authors\":\"Siliang Jiang, Yongsheng Cui, Bo Wang, Zheng Fu, Caixia Dong\",\"doi\":\"10.1016/j.ijbiomac.2024.137207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three purified polysaccharides, CDAP-1, CDAP-2, and CDAP-3, were prepared from the rhizome of Cistanche deserticola and characterized. Structural analysis revealed that CDAP-1 and CDAP-2 are highly branched RG-I-type polysaccharides with side chains, including arabinans, galactans, and/or AGs, whereas CDAP-3 is a typical HG-type polysaccharide. In vivo tests revealed that treatment with the crude polysaccharide fraction (CDCP) significantly prolonged the survival of H22 tumor-bearing mice and exhibited antitumor effects. In vitro experiments demonstrated that all three polysaccharides could polarize M2-like TAMs toward the M1 phenotype. As a major component of CDCP, CDAP-2 could act on M2 macrophages through the TLR4 receptor-mediated NF-κB signaling pathway. An in vitro cell model verified that CDAP-2 could inhibit cell proliferation by reversing the polarization of M2-like TAMs to the cytotoxic M1 phenotype. Overall, we found that CDCP showed a clear antitumor effect and that its major component, CDAP-2, could reverse the suppressive TAM phenotype in the microenvironment, providing a scientific basis for the clinical application and development of C. deserticola.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137207\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137207","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Acidic polysaccharides from Cistanche deserticola and their effects on the polarization of tumor-associated macrophages.
Three purified polysaccharides, CDAP-1, CDAP-2, and CDAP-3, were prepared from the rhizome of Cistanche deserticola and characterized. Structural analysis revealed that CDAP-1 and CDAP-2 are highly branched RG-I-type polysaccharides with side chains, including arabinans, galactans, and/or AGs, whereas CDAP-3 is a typical HG-type polysaccharide. In vivo tests revealed that treatment with the crude polysaccharide fraction (CDCP) significantly prolonged the survival of H22 tumor-bearing mice and exhibited antitumor effects. In vitro experiments demonstrated that all three polysaccharides could polarize M2-like TAMs toward the M1 phenotype. As a major component of CDCP, CDAP-2 could act on M2 macrophages through the TLR4 receptor-mediated NF-κB signaling pathway. An in vitro cell model verified that CDAP-2 could inhibit cell proliferation by reversing the polarization of M2-like TAMs to the cytotoxic M1 phenotype. Overall, we found that CDCP showed a clear antitumor effect and that its major component, CDAP-2, could reverse the suppressive TAM phenotype in the microenvironment, providing a scientific basis for the clinical application and development of C. deserticola.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.