Jing Huang , Yan Liang , Jiyuan Wang , Yi Shan , Cheng Zhao , Qiongge Li , Huiqing Dong , Jie Lu
{"title":"用于评估多发性硬化症患者海马体的定量合成磁共振成像。","authors":"Jing Huang , Yan Liang , Jiyuan Wang , Yi Shan , Cheng Zhao , Qiongge Li , Huiqing Dong , Jie Lu","doi":"10.1016/j.brainres.2024.149298","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To identify early changes in hippocampal quantitative parameters in multiple sclerosis (MS) patients using synthetic MRI, and to correlate these changes with clinical variables.</div></div><div><h3>Methods</h3><div>45 MS patients and 26 healthy controls (HCs) underwent synthetic MRI and 3D-T1 MRI. The hippocampus volumes were assessed by using voxel-based morphometry. Synthetic MRI parameters (T1, T2, and proton density (PD)) from hippocampus and its subfield were measured and compared, and their associations with the Expanded Disability Status Scale (EDSS), Symbol Digit Modalities Test (SDMT) scores were further investigated.</div></div><div><h3>Results</h3><div>There was no significant difference in hippocampal volume between MS patients and HCs. Compared with HCs, the T1, T2 and PD values of hippocampus and its subfield increased in MS patients. T2 values showed positive correlation with EDSS and negative correlation with SDMT.</div></div><div><h3>Conclusions</h3><div>Synthetic MRI can detect subtle quantitative changes of the hippocampus in MS patients with normal hippocampal volume. Specifically, Synthetic MRI parameters may apply as potentially effective imaging biomarker for hippocampus evaluation.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1847 ","pages":"Article 149298"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative synthetic MRI for evaluation of hippocampus in patients with multiple sclerosis\",\"authors\":\"Jing Huang , Yan Liang , Jiyuan Wang , Yi Shan , Cheng Zhao , Qiongge Li , Huiqing Dong , Jie Lu\",\"doi\":\"10.1016/j.brainres.2024.149298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To identify early changes in hippocampal quantitative parameters in multiple sclerosis (MS) patients using synthetic MRI, and to correlate these changes with clinical variables.</div></div><div><h3>Methods</h3><div>45 MS patients and 26 healthy controls (HCs) underwent synthetic MRI and 3D-T1 MRI. The hippocampus volumes were assessed by using voxel-based morphometry. Synthetic MRI parameters (T1, T2, and proton density (PD)) from hippocampus and its subfield were measured and compared, and their associations with the Expanded Disability Status Scale (EDSS), Symbol Digit Modalities Test (SDMT) scores were further investigated.</div></div><div><h3>Results</h3><div>There was no significant difference in hippocampal volume between MS patients and HCs. Compared with HCs, the T1, T2 and PD values of hippocampus and its subfield increased in MS patients. T2 values showed positive correlation with EDSS and negative correlation with SDMT.</div></div><div><h3>Conclusions</h3><div>Synthetic MRI can detect subtle quantitative changes of the hippocampus in MS patients with normal hippocampal volume. Specifically, Synthetic MRI parameters may apply as potentially effective imaging biomarker for hippocampus evaluation.</div></div>\",\"PeriodicalId\":9083,\"journal\":{\"name\":\"Brain Research\",\"volume\":\"1847 \",\"pages\":\"Article 149298\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006899324005523\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899324005523","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Quantitative synthetic MRI for evaluation of hippocampus in patients with multiple sclerosis
Objective
To identify early changes in hippocampal quantitative parameters in multiple sclerosis (MS) patients using synthetic MRI, and to correlate these changes with clinical variables.
Methods
45 MS patients and 26 healthy controls (HCs) underwent synthetic MRI and 3D-T1 MRI. The hippocampus volumes were assessed by using voxel-based morphometry. Synthetic MRI parameters (T1, T2, and proton density (PD)) from hippocampus and its subfield were measured and compared, and their associations with the Expanded Disability Status Scale (EDSS), Symbol Digit Modalities Test (SDMT) scores were further investigated.
Results
There was no significant difference in hippocampal volume between MS patients and HCs. Compared with HCs, the T1, T2 and PD values of hippocampus and its subfield increased in MS patients. T2 values showed positive correlation with EDSS and negative correlation with SDMT.
Conclusions
Synthetic MRI can detect subtle quantitative changes of the hippocampus in MS patients with normal hippocampal volume. Specifically, Synthetic MRI parameters may apply as potentially effective imaging biomarker for hippocampus evaluation.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.