石墨烯量子点修饰电极作为电化学传感工具,用于检测生物液体和软饮料中的可待因。

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Microchimica Acta Pub Date : 2024-11-04 DOI:10.1007/s00604-024-06787-2
Lucía Ferrer-Biechy, M. Laura Soriano, Rafael Lucena, Soledad Cárdenas
{"title":"石墨烯量子点修饰电极作为电化学传感工具,用于检测生物液体和软饮料中的可待因。","authors":"Lucía Ferrer-Biechy,&nbsp;M. Laura Soriano,&nbsp;Rafael Lucena,&nbsp;Soledad Cárdenas","doi":"10.1007/s00604-024-06787-2","DOIUrl":null,"url":null,"abstract":"<div><p>An electroanalytical method based on disposable screen-printed carbon electrodes modified with non-toxic carbonaceous nanodots is proposed as a reliable and effective device for codeine determination in biological fluids and soft drinks. Graphene quantum dots (GQDs), carbon quantum dots (CQDs) and carbon nanodots (CNDs) were evaluated as electrode modifiers for the determination of the drug. The electroactive areas of the modified electrodes were assessed by cyclic voltammetry using potassium ferricyanide. Results demonstrated that GQDs provided the best analytical response for codeine, displaying an intense and well-defined anodic wave approximately 0.9 V vs reference electrode. The method exhibits an acceptable linear dynamic range, low limits of detection and quantification (0.21 and 0.73 µM, respectively), and satisfactory precision (below 3.9% expressed as relative standard deviation (RSD)) in saliva. Only the analysis of biofluids requires a simple extraction protocol. The feasibility and applicability of this novel approach were assessed by determining codeine in different matrices, with recoveries ranging from 69 to 112%. This cost-effective, simple, easily miniaturised and portable method was applied not only to biofluids but also for the direct detection of codeine in soft drinks combined with a codeine-enriched syrup, a medication that is being used to adulterate beverages, particularly at specific events (drinking and nightclub parties). There is no need for any sample treatment, demonstrating its versatility in analysing beverages for potential adulteration as well.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 12","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene quantum dots modified electrodes as electrochemical sensing tool towards the detection of codeine in biological fluids and soft drinks\",\"authors\":\"Lucía Ferrer-Biechy,&nbsp;M. Laura Soriano,&nbsp;Rafael Lucena,&nbsp;Soledad Cárdenas\",\"doi\":\"10.1007/s00604-024-06787-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An electroanalytical method based on disposable screen-printed carbon electrodes modified with non-toxic carbonaceous nanodots is proposed as a reliable and effective device for codeine determination in biological fluids and soft drinks. Graphene quantum dots (GQDs), carbon quantum dots (CQDs) and carbon nanodots (CNDs) were evaluated as electrode modifiers for the determination of the drug. The electroactive areas of the modified electrodes were assessed by cyclic voltammetry using potassium ferricyanide. Results demonstrated that GQDs provided the best analytical response for codeine, displaying an intense and well-defined anodic wave approximately 0.9 V vs reference electrode. The method exhibits an acceptable linear dynamic range, low limits of detection and quantification (0.21 and 0.73 µM, respectively), and satisfactory precision (below 3.9% expressed as relative standard deviation (RSD)) in saliva. Only the analysis of biofluids requires a simple extraction protocol. The feasibility and applicability of this novel approach were assessed by determining codeine in different matrices, with recoveries ranging from 69 to 112%. This cost-effective, simple, easily miniaturised and portable method was applied not only to biofluids but also for the direct detection of codeine in soft drinks combined with a codeine-enriched syrup, a medication that is being used to adulterate beverages, particularly at specific events (drinking and nightclub parties). There is no need for any sample treatment, demonstrating its versatility in analysing beverages for potential adulteration as well.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"191 12\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06787-2\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06787-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于用无毒碳质纳米点修饰的一次性丝网印刷碳电极的电分析方法,该方法是测定生物液体和软饮料中可待因的可靠而有效的装置。评估了石墨烯量子点(GQDs)、碳量子点(CQDs)和碳纳米点(CNDs)作为电极改性剂在药物测定中的应用。使用铁氰化钾通过循环伏安法对修饰电极的电活性区域进行了评估。结果表明,GQD 为可待因提供了最佳的分析响应,与参比电极相比,可待因显示出约 0.9 V 的强烈而清晰的阳极波。该方法在唾液中具有可接受的线性动态范围、较低的检测限和定量限(分别为 0.21 和 0.73 µM)以及令人满意的精确度(以相对标准偏差 (RSD) 表示,低于 3.9%)。对生物流体的分析只需要一个简单的提取方案。通过测定不同基质中的可待因,对这种新方法的可行性和适用性进行了评估,回收率在 69% 到 112% 之间。这种成本效益高、简单、易于微型化和便携的方法不仅适用于生物液体,还可用于直接检测软饮料中的可待因和富含可待因的糖浆。无需对样品进行任何处理,这表明它在分析饮料中的潜在掺假物方面也具有多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graphene quantum dots modified electrodes as electrochemical sensing tool towards the detection of codeine in biological fluids and soft drinks

An electroanalytical method based on disposable screen-printed carbon electrodes modified with non-toxic carbonaceous nanodots is proposed as a reliable and effective device for codeine determination in biological fluids and soft drinks. Graphene quantum dots (GQDs), carbon quantum dots (CQDs) and carbon nanodots (CNDs) were evaluated as electrode modifiers for the determination of the drug. The electroactive areas of the modified electrodes were assessed by cyclic voltammetry using potassium ferricyanide. Results demonstrated that GQDs provided the best analytical response for codeine, displaying an intense and well-defined anodic wave approximately 0.9 V vs reference electrode. The method exhibits an acceptable linear dynamic range, low limits of detection and quantification (0.21 and 0.73 µM, respectively), and satisfactory precision (below 3.9% expressed as relative standard deviation (RSD)) in saliva. Only the analysis of biofluids requires a simple extraction protocol. The feasibility and applicability of this novel approach were assessed by determining codeine in different matrices, with recoveries ranging from 69 to 112%. This cost-effective, simple, easily miniaturised and portable method was applied not only to biofluids but also for the direct detection of codeine in soft drinks combined with a codeine-enriched syrup, a medication that is being used to adulterate beverages, particularly at specific events (drinking and nightclub parties). There is no need for any sample treatment, demonstrating its versatility in analysing beverages for potential adulteration as well.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
期刊最新文献
Gold-grafted melamine sponge as surface-enhanced Raman spectroscopy substrate for enzyme-linked immunoassay of mycotoxins in cereal samples Fluorescent core–shell SiO2@COF composite for ultra-sensitive detection of cysteine and homocysteine Chemiresistive sensor array for quantitative prediction of CO and NO2 gas concentrations in their mixture using machine learning algorithms Detection of micro- and nanoplastic particles in leafy green vegetables by SERS coupled with gold-silver core–shell nanoparticles Conjugated hypercrosslinked polymers for in situ imprinting, selective sorption, and fluorescent turn-on sensing of oxalic acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1