{"title":"对 Fe (IV)O 卟啉类配合物 C-H 活化反应活性的见解:计算研究。","authors":"Lovleen Kaur, Debasish Mandal","doi":"10.1002/cphc.202400765","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a detailed comparative analysis of C-H activations catalyzed by three different Fe(IV)O porphyrinoid complexes. The study considers the usual heme porphyrin (complex I) as the base compound, porphyrazine (complex II), which is obtained by replacing carbon with nitrogen at the meso position, and phthalocyanine (complex III), which is obtained through the peripheral benzoannulation of porphyrazine. The main focus here is to explore the impact of bridging groups and peripheral functionalization in heme systems on reactivity. Chloride is used as the axial ligand for all complexes and dihydroanthracene (DHA) is used as the substrate. Factors such as distortion energy and different electron acceptor orbitals significantly affect the overall reactivity. The effect of substitution on quantum mechanical tunneling, using H/D kinetic isotope effect studies, is also included. The results reveal a fascinating reactivity order: meso nitrogen substitution enhances reactivity, while additional benzo-annulation hinders reactivity, leading to the order complex II >complex I >complex III. In comparison to the usual model compound I, which is Fe(IV)O-porphyrin π cation radical with an -SH axial ligand, complex II was found to be more reactive. The electron affinity of the Fe(IV)O complexes and the dissociation energy of the forming Fe(IV)O-H bond aligns with observed reactivity trend. These findings support the use of accessible iron frameworks derived from porphyrin in C-H activation processes.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400765"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into C-H Activation Reactivity of Fe (IV)O Porphyrinoid Complexes: A Computational Investigation.\",\"authors\":\"Lovleen Kaur, Debasish Mandal\",\"doi\":\"10.1002/cphc.202400765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work presents a detailed comparative analysis of C-H activations catalyzed by three different Fe(IV)O porphyrinoid complexes. The study considers the usual heme porphyrin (complex I) as the base compound, porphyrazine (complex II), which is obtained by replacing carbon with nitrogen at the meso position, and phthalocyanine (complex III), which is obtained through the peripheral benzoannulation of porphyrazine. The main focus here is to explore the impact of bridging groups and peripheral functionalization in heme systems on reactivity. Chloride is used as the axial ligand for all complexes and dihydroanthracene (DHA) is used as the substrate. Factors such as distortion energy and different electron acceptor orbitals significantly affect the overall reactivity. The effect of substitution on quantum mechanical tunneling, using H/D kinetic isotope effect studies, is also included. The results reveal a fascinating reactivity order: meso nitrogen substitution enhances reactivity, while additional benzo-annulation hinders reactivity, leading to the order complex II >complex I >complex III. In comparison to the usual model compound I, which is Fe(IV)O-porphyrin π cation radical with an -SH axial ligand, complex II was found to be more reactive. The electron affinity of the Fe(IV)O complexes and the dissociation energy of the forming Fe(IV)O-H bond aligns with observed reactivity trend. These findings support the use of accessible iron frameworks derived from porphyrin in C-H activation processes.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400765\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400765\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400765","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究对三种不同的 Fe(IV)O卟啉配合物催化的 C-H 活化进行了详细的比较分析。研究考虑了作为基化合物的常见血红素卟啉(复合物 I)、通过在中位用氮取代碳而得到的卟嗪(复合物 II)以及通过卟嗪的外围苯并官能化而得到的酞菁(复合物 III)。本文的重点是探讨血红素体系中桥接基团和外围官能化对反应活性的影响。畸变能和电子受体轨道等因素会对整体反应性产生重大影响。此外,还利用 H/D 动力同位素效应研究取代对量子力学隧道的影响。研究结果揭示了一个令人着迷的反应性顺序:介氮取代增强了反应性,而额外的苯并annulation则阻碍了反应性,从而导致络合物 II > 络合物 I > 络合物 III 的顺序。络合物 I 是带有 -SH 轴配体的 Fe(IV)O-卟啉 π 阳离子自由基,与通常的络合物 I 相比,络合物 II 的反应活性更高。Fe(IV)O 复合物的电子亲和力和形成的 Fe(IV)O-H 键的解离能与观察到的反应性趋势一致。这些发现支持在 C-H 活化过程中使用由卟啉衍生的可访问铁框架。
Insights into C-H Activation Reactivity of Fe (IV)O Porphyrinoid Complexes: A Computational Investigation.
This work presents a detailed comparative analysis of C-H activations catalyzed by three different Fe(IV)O porphyrinoid complexes. The study considers the usual heme porphyrin (complex I) as the base compound, porphyrazine (complex II), which is obtained by replacing carbon with nitrogen at the meso position, and phthalocyanine (complex III), which is obtained through the peripheral benzoannulation of porphyrazine. The main focus here is to explore the impact of bridging groups and peripheral functionalization in heme systems on reactivity. Chloride is used as the axial ligand for all complexes and dihydroanthracene (DHA) is used as the substrate. Factors such as distortion energy and different electron acceptor orbitals significantly affect the overall reactivity. The effect of substitution on quantum mechanical tunneling, using H/D kinetic isotope effect studies, is also included. The results reveal a fascinating reactivity order: meso nitrogen substitution enhances reactivity, while additional benzo-annulation hinders reactivity, leading to the order complex II >complex I >complex III. In comparison to the usual model compound I, which is Fe(IV)O-porphyrin π cation radical with an -SH axial ligand, complex II was found to be more reactive. The electron affinity of the Fe(IV)O complexes and the dissociation energy of the forming Fe(IV)O-H bond aligns with observed reactivity trend. These findings support the use of accessible iron frameworks derived from porphyrin in C-H activation processes.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.